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We develop an ELLAM-MFEM solution procedure for the numerical simulation of
compressible fluid flows in porous media with point sources and sinks. An Eulerian—
Lagrangian localized adjoint method (ELLAM), which was previously shown to
outperform many widely used and well-regarded methods in the context of linear
transport partial differential equations, is presented to solve the transport equation for
concentration. Since accurate fluid velocities are crucial in numerical simulations, a
mixed finite element method (MFEM) is used to simultaneously solve the pressure
equation as a system of first-order partial differential equations for the pressure
and mass flow rate. This minimizes the numerical difficulties occurring in standard
methods caused by differentiation of the pressure and then multiplication by rough
coefficients.

Computational experiments show that the ELLAM-MFEM solution procedure
can accurately simulate compressible fluid flows in porous media with coarse spatial
grids and very large time steps, which are one or two orders of magnitude larger
than those used in many numerical methods. The ELLAM-MFEM solution tech-
nigue symmetrizes the governing partial differential equations, and greatly reduces
or eliminates non-physical oscillation and/or excessive numerical dispersion present
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in many large-scale simulators that are widely used in industrial applications. It con-
serves mass and treats boundary conditions in a natural manner. It can treat large
adverse mobility ratios, discontinuous permeabilities and porosities, anisotropic dis-
persion in tensor form, compressible fluid, heterogeneous media, and point sources
and sinks. (© 2000 Academic Press

Key Words:advection—diffusion equations; characteristic methods; compressible
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1. INTRODUCTION

The objective of petroleum reservoir simulation, environmental modeling, and me
other important applications is to predict the complex chemical, physical, and fluid fl
processes occurring in subsurface porous media sufficiently well to optimize the reco
of hydrocarbon or to accurately predict and thoroughly remediate the contaminatiol
groundwater, etc. In order to do this, one must build mathematical models to describe
essential phenomena and the fundamental laws, and design numerical methods to disc
these models and to represent the basic features as well as possible without introdi
serious nonphysical phenomena. The mathematical models used to describe these co
fluid flow processes are strongly coupled nonlinear systems of partial differential equat
(PDEs) and constraining equations. These systems are characterized by strong nonlin
and coupling among these equations, the advection dominance of the transport equ
and the moving steep fronts present in the solutions to this equation, the singularities o
solutions at point sources and sinks (i.e., injection and production wells), the compressit
of the fluid mixture and the medium, the strong heterogeneity of the media, the large adv
mobility ratio in the fluid flow processes, the anisotropic dispersion in tensor form, t
enormous size of field-scale application, and the required long time period of predict
Because of these salient features, the numerical simulation to these systems encol
severe difficulties.

Space-centered finite difference or finite element methods (FDMs, FEMS) often gene
numerical solutions with severe non-physical oscillations. In industrial applications, |
stream weighting techniques are commonly used to stabilize the numerical approxima
to these systems in large-scale simulators. However, these methods produce excessiv
ficial numerical dispersion and potentially spurious effects related to the orientation of
grid [24]. Many attempts have been made to develop numerical methods that overcome:
difficulties and allow accurate numerical solutions with reasonable computational eff
High-resolution methods, such as the Godunov methods, the total variation diminist
methods (TVD), and the essentially non-oscillatory (ENO) methods, are well suited for
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solution of nonlinear hyperbolic conservation laws and the resolution of shock discon
uities in the solutions without excessive smearing or spurious oscillations [16, 18, 23,
50, 51, 53]. Moreover, they conserve mass. High-resolution methods have been suc
fully applied in aerodynamics, where the fluids are highly compressible and flows exh
shock discontinuities, and have generated very satisfactory results. But these methoc
mostly explicited; the size of the time steps in these methods is subject to the CFL ¢
straint. Few references could be found in the literature on the application of high-resolu
methods to porous medium flows, especially in the presence of strongly heterogeneou:
compressible media as well as point sources and sinks.

Because of the hyperbolic nature of advective transport, characteristic methods have
investigated extensively in numerical simulations of porous medium flows [8, 17, 22, |
37, 39-41, 54]. Characteristic methods follow the movement of information or particles
well as their interactions. Because the solutions are much smoother along the charactel
than they are in the time direction, characteristic methods allow large time steps to be us
numerical simulations while still maintaining their stability and accuracy. But characteris
methods usually require extra implementational effort and raise many implementational
analytical issues that need to be addressed. Traditional forward or particle tracking met|
advance the grids following the characteristics. They greatly reduce temporal errors .
thus, generate fairly accurate solutions even if large time steps are used. However,
often distort the evolving grids severely and greatly complicate the solution procedure.
modified method of characteristics (MMOC) follows the flow direction by tracking th
characteristics backward from a fixed grid at the current time step and hence avoids the
distortion problems present in forward tracking methods [22]. The MMOC symmetrizes ¢
stabilizes the governing PDEs, greatly reducing temporal errors and therefore allowing
large time steps in a simulation without the loss of accuracy and eliminating the exces
numerical dispersion and grid orientation effects present in many Eulerian methods [24,
However, many previous characteristic methods fail to conserve mass and have difficu
in treating boundary conditions.

Douglaset al. presented and analyzed a sequential linearization solution procedure for
miscible displacement of one incompressible fluid by another in a porous medium, in wt
mixed finite element methods (MFEMSs) are employed to approximate the pressure,
the Darcy velocity and Galerkin FEMs are used to approximate the concentration [20,
Russellfirstintroduced the MMOC into the SPE literature in solving the transport equatio
the system of incompressible fluid flow for reservoir simulation, where the pressure equa
was solved by an FEM with piecewise biquadratic trial and test functions [45]. Ewir
Russell, and Wheeler combined the ideas [20, 21, 45] and proposed an improved MM
MFEM sequential solution procedure [27] for the miscible displacement of incompressi
fluid flow by using the MMOC to approximate the transport equation and an MFEM f
the pressure equation. The use of MFEM vyields accurate Darcy velocity fields, to cons
mass that conserves mass, while the application of MMOC allows large time steps t
used in solving the transport equation without loss of accuracy and eliminates the nume
dispersion and grid orientation effects, which are among the major difficulties presente
large-scale reservoir simulators widely used in industry applications [4, 6, 15, 24, 28, :
However, the MMOC-MFEM solution procedure fails to conserve mass and treats bounc
conditions in amad hocmanner, which seriously affects its application. Finally, despit
the large amount of research conducted on the numerical simulation of incompres:
fluid flows, few numerical experiments have been reported in the literature on numer
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simulations to compressible fluid flows in porous media, especially with characteri
methods.

The Eulerian—Lagrangian localized adjoint method (ELLAM) was first presented
Celia, Russell, Herrera, and Ewing in solving one-dimensional (constant-coefficie
advection—diffusion PDEs [13, 33]. The ELLAM methodology provides a general ch:
acteristic solution procedure for advection—diffusion PDEs and a consistent framew
for treating general boundary conditions and maintaining mass conservation. Thus, it c
comes the two principal shortcomings of previous characteristic methods while maintair
their numerical advantages. For example, like the MMOC schemes [22, 27] and many ¢
characteristic methods, the ELLAM schemes can solve advection—diffusion PDEs a
rately regardless of whether the advection or diffusion term dominates the flow proces
fact, when diffusion dominates a fluid process, the governing transport PDE behaves li
parabolic PDE. Virtually all numerical methods work well in this case. The authors pre
ously carried out numerical experiments in the context of one- and two-dimensional lir
transport PDEs [1, 55-57]. These results show that the ELLAM schemes often outperf
many widely used and well-regarded methods.

In this paper we develop an ELLAM-MFEM solution procedure for compressible flu
flows in porous media with point sources and sinks, which have much stronger coupling
nonlinearity than incompressible fluid flows. In the ELLAM-MFEM solution procedure
we use an ELLAM scheme for the transport equation and an MFEM method for the pres
equation, and derive an iterative procedure for the system of compressible fluid flow.
ELLAM-MFEM solution procedure can simulate compressible fluid flow in porous med
accurately with coarse spatial grids and very large time steps, which are much larger
the time steps used in the MMOC-MFEM sequential solution procedure and one or
orders of magnitude larger than those used in many large-scale simulators. In this ma
the ELLAM-MFEM solution technique has a greatly improved computational efficien:
over many other methods. The ELLAM-MFEM technique can treat large adverse mobi
ratios, discontinuous permeabilities and porosities, anisotropic dispersion in tensor fc
compressible fluid, heterogeneous media, and point sources and sinks.

The rest of this paper is organized as follows. In Section 2, we derive a mathemat
model for compressible fluid flows in porous media. In Section 3, we outline an MFE
scheme for the parabolic pressure equation. In Section 4, we present an ELLAM sch
for the transport equation. In Section 5, we derive an ELLAM-MFEM solution procedu
for the system of compressible flow. In Section 6, we perform different types of numeri
experiments to demonstrate the strength of the ELLAM-MFEM solution procedure.
Section 7, we summarize the results and draw conclusions.

2. AMATHEMATICAL MODEL FOR COMPRESSIBLE FLUID
FLOWS IN POROUS MEDIA

In this section, we derive a mathematical model for describing compressible fluid fl
processes in porous media that arise in petroleum reservoir simulation, subsurface cor
inant transport and remediation, and other applications. In these problems, the fluid
processes are governed by the mass conservation for the total fluid mixture and fol
invading fluid or solvent, Darcy’s law for momentum, and equations of state that prov
fluid properties.
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2.1. Conservation of Mass for the Fluid Mixture

In this subsection, we derive a governing differential equation that describes the c
servation of mass for the total fluid mixture. We consider a fluid flow process, in whi
the invading fluid and the resident fluid are fully miscible and flow together as one ph
fluid in the porous medium. Because in many cases the thickness of the physical dom:
significantly smaller than its horizontal length and width, we assume that the fluid flow p
cess is vertically homogeneous by averaging the physical quantities and medium prope
in the vertical direction and we assume the physical dorfaio IR? with a nonuniform
local elevation. Let(x, t) = (ux(x, t), uy(x, t)) be the Darcy (superficial) velocity of the
fluid mixture, letp be the mass density of the fluid mixture, and ¢ebe the porosity
of the medium (fraction of the total volume available for fluid flow). LetC Q be any
representative volume element; then the conservation of mass states that the rate of
accumulated withirA equals the rate of mass flowing into A across the boundargf A
plus the net amount of mass injected imMovia sources and sinks. This statement can b
expressed in an integral form mathematically,

E/qbde:—/ pu-nd8+/qu, (2.1)
dt Ja aA A

wheren = (ny, ny) is the unit outward normal to the boundar, andq is the source and
sink term that represents the mass flow rate per unit volume injected into (or produced fr
the volume elemenA.

Applying the divergence theorem, we get

0
/A - @pdx= /A (=¥ - (o) + @) dx. (2.2)

This is in turn written as the following partial differential equation since Eq. (2.2) holds f
arbitrary A C Q:

0

2.2. Conservation of Mass for the Solute/Solvent in the Fluid Mixture

Let c be the concentration (mass fraction) of the injected fluid of the concerned
lute/solvent in the fluid mixture. We can derive a governing differential equation that c
scribes the conservation of mass for the concerned component as Eq. (2.1). But in this
we also need to take into account the effect of the physical diffusion and dispersion of
component in the fluid mixture. Hence, the conservation of mass is expressed as

g/q&,ocdx:—/ p(uc—D(u)Vc)-ndS+/qc*dx, (2.4)
dt Ja aA A

where (ic — D(u)Vc) is the total (volumetric) flux flowing intd\ across the boundaB/A

of A. c* is a prescribed concentration at sources (or injection wells) or is eqoal inks.
The physical diffusion—dispersion tensor consists of molecular diffusion and (anisotrc
velocity-dependent) mechanical dispersion [4, 7, 38]

2
D(U) = dm!l + ck|ull + o — ( e uxuy), (2.5)

2
[ul Uxly U
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with dq, being the molecular diffusion coefficierttbeing the 2x 2 identity tensor, and;
andd, being the transverse and longitudinal dispersivities, respectively.
Like the derivation of Eq. (2.3), we rewrite Eq. (2.4) as a partial differential equation

9(¢pC)
ot

+V - (puc — pD(u)Vc) = qc’, xe, te((OT]. (2.6)

2.3. Darcy’'s Law

Darcy’s law establishes the basic relationship between the flow rate or the Darcy (su
ficial) velocity and the pressure gradient, which is the most widely used law or correlat
for fluid flows in porous media. Lgt(x, t) be the pressure of the fluid mixture. Darcy’s law
states

UZ_L(Vp—ngd), xeQ, tel0,T] 2.7)
u(C)

Hereg is the magnitude of the acceleration due to grawty) is the depth or elevation of
the reservoir, ani is the permeability tensor of the medium given by

_ Kux(X)  Kxy(X) (2.8)
kyx(¥)  Kkyy() ]’ '

which quantifies the ability of the porous medium to transmit a fluid. In many poro
medium flow applications, the permeability tengois a diagonal tensor. Furthermore, the
medium is often isotropic; i.ekyx(X) = kyy(X). 1(C) is the viscosity of the fluid mixture,
which is concentration-dependent and is often determined by the mixing rule [24]

1(C) = po[(1 —c) + M¥4c] 4. (2.9)

Here g is the viscosity of the resident fluid (e.g., oil in petroleum reservoir simulatior
The behavior ofi(c), as a function o€, has an extremely important effect on the efficienc
of the displacement process and ultimate oil recovery in petroleum reservoir simulatio
the efficiency in the remediation process in environmental modeling. The behayi¢c)of
in turn depends heavily on the mobility ratM = o/us = 1 (0)/u (1), wherepus is the
viscosity of the invading fluid or solvent in petroleum reservoir simulation or that of tl
solute or solvent in subsurface contaminant transpoi ¥ 1, the displacement process
has an adverse mobility ratio and the viscous fingering phenomenon is expected to oc

2.4. Equations of State

Note that the system of partial differential equations (2.3), (2.6), and (2.7) is under
termined, since four partial differential equations (note Eq. (2.7) is a vector different
equation of two components involving= (uy, uy)) contain five primary variables (the
densityp, the pressure, the Darcy velocityu = (uy, uy), and the concentrationof the
solute or solvent). Therefore, an additional equation is needed to close the system.

Let V be the specific volume. The compressibility of a flajdis defined to be the rate
of change ofV with respect to the pressugeper unit volume. Mathematicallg,, can be
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expressed by [43, 52]

10V
=———, 2.10
G V ap (2.10)

where the minus sign in the definition takes into account the fact that the véudeereases
as the pressurp increases. Since the density=1/V, Eg. (2.10) can be rewritten as

19
c, =~ (2.11)
pop
For constanty, integration of Eq. (2.11) yields an equation of the form
0 = pr eXp(C, (P — Pr)), (2.12)

where p; is the reference density at the reference presgréequation (2.12) and its
simplified versions have been widely used in modeling subsurface contaminant trans
and remediation in the hydroscience community. They can also be applied to compres
fluid flow processes in a reservoir simulation, unless the fluids contain large quantitie
dissolved gas [38].

Duetothe effect of large pressure changes involved in porous medium fluid flow proce:
and the type of the medium of the reservoir, the porous medium can deform. In this pz
we consider the following constitutive relation that has been used very often to model
deformationg [4, 7, 34],

¢ = ¢ (X) exp(Cy (X) (P — Pr)), (2.13)

wherec,(x) is the compressibility of the medium ag(x) is the reference porosity of
the medium at the reference pressye The porosity model (2.13) considers only the
volumetric effect of the porous medium deformation caused by the fluid flow process
notvice versa. If the porous medium consists of stress-sensitive elasto-plastic material, |
accurate (and possibly more complicated) constitutive relations should be used, which ¢
introduce stronger nonlinearities to the mathematical model through, e.g,(¥g) term
defined in Eq. (2.15). We refer interested readers to [14, 35] for more details.

2.5. A System of PDEs for Compressible Fluid Flow in Porous Media

After we have derived the governing partial differential equations and equations of si
for compressible fluid flows in porous media, we now reformat them into a system of PL
and constraining equations. Similarly to the mathematical models for incompressible f
flow [7, 20, 21, 24], we combine the governing equation for the conservation of mass
the fluid mixture (2.3) and Darcy’s law (2.7) to form a system of PDEs for the pregsure
and the flow rate. But in compressible fluid flow processes, the demsityhe fluid is not
assumed to be constant and cannot be canceled from the governing equation. Henc
Darcy velocityu has been used as a primary variable. In the current context, we use the n
flow rateo = pu as a primary variable. We also use Egs. (2.12) and (2.13) to differenti
the accumulation term in Eq. (2.3) with respectpdeading to a system of PDEs for the
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pressurep and the mass flow rate,

0]
sp(x,p)—p+V-a=q, XeQ, te(0T],
ot
(2.14)
- p(PK
= - (Vp—p(pgvd), xeQ, te(0,T],
u(c)
wheresy (X, p) is the storage term defined by
ad
Sp(X, p) = (SL;) = p(PIP (X, P)(Cy(X) + Cp). (2.15)

We can also rewrite the governing equation (2.6) in terms of the mass flow i@de

9d(¢pC)
ot

where the diffusion—dispersion tendd¢o, p) is defined by

4+ V.(oc—D(o, p)Vec) =qc, xe, te(T], (2.16)

o —d [ of oxoy
D(. p) = p(PID(W) = g (X, (P +hlorll + = , | @17

ol Ox0y Oy

with o = (oy, oy).

Therefore, a mathematical model for describing compressible fluid flows in porous me
is described by a system of partial differential equations (2.14) and (2.16), as well as
equations of state (2.12) and (2.13) that provide the constitutive relationshj@(p) and
¢ =¢ (X, p). This system also needs to be closed by the initial conditions for the press
p(x, t) and the concentratiot(x, t),

c(X, 0) = cy(x), X e Q,

PX.0) = po(x),  xeQ (2.18)

and boundary conditions. In petroleum reservoir simulation the bourtdarng typically
impermeable, leading to no-flow boundary conditions of the form [38]

o-n=0, xX,t) e 02 x [0, T],

(2.19)
D(o, p)Ve) -n =0, x,t) €e 92 x [0, T].

These conditions also arise in environmental modeling even though other types of boun
conditions are possible [7]. For simplicity and definiteness of exposition, we consi
boundary conditions (2.19) and assufe- (ax, by) x (ay, by) to be a rectangular domain.

Remark 2.1. The system (2.12)—(2.17) is a strongly coupled system of time-depend
nonlinear partial differential equations and constraining equations. In porous medium f
flow processes, diffusion or dispersion is often a small phenomenon relative to advec
Moreover, laboratory experiments have found that the longitudinal disperdiigtyypically
considerably greater than the transverse dispersiyignd that the molecular diffusion
coefficientdy, is very small by comparison. Hence, Eg. (2.16) is an advection—diffusi
equation with advection being the dominant phenomenon. In addition, the effective Pe
number of these problems is large, and sharp traveling interfaces between the injecte
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resident fluids diffuse slowly as they move through the reservoir. Finally, the visgogity

in Eq. (2.7) changes very rapidly with the concentration in the neighborhood of the mov
fluid interface and is fairly constant away from the steep front region. In actual resen
displacement, the mobility rati® is usually much larger than 1. Thus, these displaceme
processes have a large adverse mobility ratio and viscous fingering instability could oc

Remark 2.2. For an incompressible fluid flow and medium, the dengitg a constant
and¢ = ¢ (x) is independent of the pressupe The system (2.12)—(2.17) is reduced to the
model

vou=3 xeQ, te(T]
0
K (2.20)
Uu=———(Vp— pgVvd), xeQ, te(,T],
u(c)
and
qb(x)z—erV-(uc—D(u)Vc):E, Xew, te(0T], (2.21)
P

with D(u) being given by Eq. (2.5). The system for compressible fluid flows (2.12)—(2.1
has much stronger nonlinearity and couplings, due to the effect of the storags, {&rm)
and Egs. (2.12)—(2.13).

Remark 2.3. While the system (2.12)—(2.17) and nonlinear hyperbolic conservation la
share such common difficulties as moving steep fronts and advection dominance, they
have salient differences. In aerodynamics, the concerned fluids are mainly gases (air) th.
highly compressible. The solutions to these problems often exhibit “shock discontinuitie
mainly due to the effect of the nonlinear flux functions and couplings. The interaction
these shock discontinuities can be extremely difficult to model, to analyze, and to simul
In subsurface porous medium fluid flow processes, the major features and/or difficul
include the nonlinearity and couplings of the differential equations (2.14) and (2.16) as
as the equations of state (2.12) and (2.13), the singularities of the solutions at point sot
and sinks, the strong heterogeneity of the porous medium, the compressibility of the f
mixture and the medium, the large mobility ratio in the displacement processes, and
enormous size of field-scale application and the required long time period of predictior

3. AMIXED FINITE ELEMENT METHOD FOR THE PRESSURE EQUATION

One important issue in the numerical solution of the system (2.12)—(2.17) is the mar
in which the mass flow rater, which governs the basic flow properties of the fluid flow
process, is calculated. Since the advection and diffusion—dispersion terms in the tran:
equation (2.16) are governed by the mass flow eataccurate simulation to Eq. (2.16)
requires an accurate approximation to the mass flonoratéowever, the flow properties of
the porous media often change abruptly with sharp changes in lithology. Also, as discu
in Section 2.3, the viscosity(c) also changes rapidly in space across steep fluid interface
These sharp changes are accompanied by large changes in the pressure gradieich,
in a compensatory fashion, yield a fairly smooth mass flow eat§he standard finite
difference and finite element methods solve Eq. (2.14) for the prepslirectly, which may



COMPRESSIBLE FLUID FLOWS 353

not be smooth due to the rough coefficients in these PDEs. The prgssudédferentiated
and then multiplied by a possibly rough coefficiéhtu to determine the mass flow rate
o via Eq. (2.14). Therefore, the resulting mass flow kats rough and often inaccurate,
which then reduces the accuracy of the approximation to the transport equation (2.16)

Mixed finite element methods approximate batlandV p from a second-order elliptic
PDE simultaneously, yielding accurate approximation¥ [5, 11, 30, 42]. Moreover,
MFEMs conserve mass, which is of essential importance in these applications. Becau
these properties, MFEMs have been successfully applied in the numerical simulation t
system of incompressible fluid flow (2.20)—(2.21) in reservoir simulation for obtaining t
pressurep and the Darcy velocity simultaneously [19, 26, 47].

3.1. Weak Formulation

Motivated by these results, we apply the MFEM to solve the parabolic pressure equa
(2.14) in the system of compressible porous medium fluid flows (2.12)—(2.17) in orde
obtain an accurate mass flow rateas well as the pressuge Let L%($2) be the standard
function space of all the Lebesgue square integrable functiors®. drhen we define the
Sobolev spaces

HY(Q) = {v(x) € L3(Q) | Vu(x) € (L3(2))?},
Hdiv; Q) = {v(X) € (L3(Q))?|V -V e L%(Q)} (3.1)
Ho(div; Q) = {v(X) € H(div; ) | v(X) - n(X) = 0, X € 982},

and
L2(0, T; X) = {w(, t) |w(-, 1): (0, T) > X, [|[w(-, t)||x € L%(0, T)}, 3.2)

whereX is a Sobolev space defined en
Multiplying the second equation in Eq. (2.14) hyc)p1(p)K ! yields

ne)

“lo+Vp=p(p)gvVd, xe, tel0,T], (3.3)
p(p)

whereK ! is the inverse of the permeability tensor. Integrating Eq. (3.3) with any te
functionv € Ho(div; ) applying the divergence theorem to thg term, and then inte-
grating the first equation in Eq. (2.14) against any test functiohg € L2 we obtain the
following weak formulation: Find a paie (x, t), p(x, t)) € L2(0, T; Ho(div; Q) x L2(R))
such that

/ HO -vdx—/ pV-vdx:/,o(p)ngvdx,
p(p) Q

/wV-adX+/Sp(X, p)—wdx—/deX (3.4)
Q Q

Y(v, w) € Ho(div; Q) x L%(R), t e (0,T],

with the initial valuep(x, 0) = po(X).
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3.2. A Mixed Finite Element Method

Let K andL represent the numbers of grid blocks in thdirection and they-direction.
We define a spatial partition on the domaln= (ay, by) x (ay, by),

ay=x <xf < <xP < <xP_ < xf =b

p p p p p (35)
ay=y0 <yl <<y| <”'<yL71<yL=bY’

with AxP =xf —xP ;fork=1,2,...,K andAy’ =y -y’ forl =1,2,..., L. We
introduce the lowest-order Raviart—-Thomas MFEM spacgavith the partition (3.5)

() = (Mgalax, bx] x MPy g[ay, by]) x (M [ax, b x Mg[ay, byl) .

K@) = Vi) € SP(Q) Vi) 1) = 0,x € 422, (36
SP(Q) = MP glay, bl x MP g[ay, byl,

with

MY slax. b = {v(x) € C¥[ay, bl [v(X) € Pa[x 1. x¢|, k=1,2,.... K}, -
My slay. by] = {v(x) € C*[ay, by] [v(x) € Pg[y" 4. y°]. I =1,2,...,L}.

HereCY[a, b] andC~'[a, b] are the spaces of continuous and piecewise continuous fur
tions, respectivelyP; is the space of univariate polynomials of degree less than or egial tc

In the numerical simulation for the system (2.12)—(2.17), we use a time stepping ¥
cedure. LetN be the number of time steps on the interval T(; we define a temporal
partition by

O=t0<t1<--~<tn<-~<tN_1<tN=T, (38)
with At, =t, —t,_1forn=1,2,..., N.

A fully discrete mixed finite element method for the pressure equation (2.14) reads
follows: Forn=1,2, ..., N, find a pair gn(X, tn), pr(X, tn)) € () x SP(2), such that

M(C(vtn)) _1 /
—K o tn) - VhdX — )V - vid
/sz,O(Ph(~,tn)) on(, ta) - Vo dX QIOh( YV - vy, dx

= /Qp(ﬁh(-,tn))QVd “Vh dX,
Mo [ un¥ - ante -+ [ St Pt (3.9)
= 8t [ attundt [ Su(BuCo )Pt to-un
V(vh, wn) € § () x SP(),
with pn(x, 0) € SP(R2) being an approximation tpy(X). Herec(x, t,) is assumed known

andpn (X, ty) is a projected value gf, (X, t,). The details will be presented in Section 5, in
which we present a decoupling and linearization technique for system (2.12)—(2.17).
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Remark 3.1. Besides the standard advantages of the MFEM mentioned at the beginr
of this section, the Raviart-Thomas expression of the mass flowstixte,,) is particu-
larly well-suited for the semi-analytical characteristic tracking used in the ELLAM scher
for the transport equation (2.16). In addition, the characteristic tracking in the MMC
scheme [22, 27, 45] often runs out of the physical don§ainumerically and causes im-
plementational and analytical problems. These problems have been treateddrhan
manner in the MMOC simulation and remain a troublesome issue. In contrast, bec:
the no-flow boundary condition (the first equation in Eq. (2.19)) is treated as an essel
boundary condition in the MFEM (3.9), the semi-analytical characteristic tracking in t
ELLAM scheme is naturally guaranteed not to flow out of the physical doaifhis is
an additional advantage of the MFEMs when they are combined with the ELLAM schel

Remark 3.2. MFEMs reformulate the parabolic pressure equation (2.14) as a first-or
system of PDEs. This system is more complicated to solve than that of a standard FDI
FEM. Also, the MFEM trial and test function spaces foando must be chosen carefully,
so that they satisfy the inf-sup stability condition. Extensive research has been conducte
the efficient solution of the MFEM system [2, 3, 10, 12, 36]. Finally, an additional numeric
difficulty for MFEMs in subsurface porous medium fluid flows is the effect of the singul
source and sink terntgx, t) as well as the discontinuous coefficients. Related studies ¢
be found in the references mentioned and in [19, 26, 47].

4. AN ELLAM SCHEME FOR THE TRANSPORT EQUATION

In this section, we develop an ELLAM scheme for the transport equation (2.16) with
assumption that the pressyseand the mass flow rate are known.

4.1. A Reference Equation

The ELLAM scheme uses a time-marching algorithm, so we only need to concent
on the current time intervat{_;, t,] defined by (3.8). Multiplying the advection-diffusion
transport equation (2.16) by space-time test functigrst) that are continuous and piece-
wise smooth, vanish outside the space-time swip (t,_1, tn], and are discontinuous in
time at timet,_1, we come up with a space-time weak formulation for Eq. (2.16):

tn
/ op c(X, th)z(x, ty) dx +/ / Vz(y, 0) - D(o, p)Vc(y, 6) dy dé
Q tho1 JQ

th
—/ / c(y. ) [¢paz(a);’ %) +o-Vz(y, 0)]dyd9
tn—l Q

tn
=/¢pC(X, tho12(X, t7 1) dx+/ /c*qz(y, 0) dy do. (4.1)
Q Q

th1

Herez(x, trtl = limi_,_,.t>1,_, Z(X, 1) to take into account the fact thagx, t) is discon-
tinuous in time at time,_;. For simplicity of notations, we do not explicitly express the
dependence op = p(p), » = (X, p), ando =o (X, t) onx, t, and p. The dependence
should be fairly clear from the context.

In the ELLAM framework [13, 33], an appropriate operator splitting of the adjoint equ
tion of Eq. (2.16) concludes that the test functiag, 0) should be chosen to satisfy the
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hyperbolic part of the adjoint equation of Eq. (2.16)

0z
¢p£(ya 9) + g - Vz(yv 9) = 09 y € Qv 9 € [tnfl, tI"I] (42)

Thus, the test function®ly, ) should be constant along the characteristiesr (6; X, t,)
defined by the initial-value problem of the ordinary differential equation (ODE)

T et
d@ - d)p’ n—1, tnl, (4'3)

r@:x, Hlo=t = X

For any(y, 6) € Q x [t,_1, tn], there exists ax € Q such thaty = r (6; x, t,). We use
the Euler method to evaluate the second (source) term on the right-hand side of Eq.
to get

th
/ /(C*q)(y, 0)z(y, 0) dy do
t Q

n-1

tn
/ (€D (r(@; X, tn)8))Z(X, tn)[I(0; X, tn)| dO dx
Q

th-1

= Atn/ C* (X, th)a(X, th)Z(X, ty) dx + Eq(c*, 2), (4.4)
Q
where
ar(o; x, t
13(6; X, t,)| = % =1+0O(t, —0) (4.5)

is the Jacobian of the transformation fromo r (6; x, tn), andEq(c*, 2) is the truncation
error due to the application of the Euler quadrature.
Similarly, we can evaluate the diffusion—dispersion term and have

tn
/ /Vz(y, 0) - D(o, p)Vc(y, 0)dydo
tn—l Q
= Atn/ Vz(x, ty) - D(o, p)Ve(x, ty) dx + Ep(c, 2), (4.6)
Q

whereEp(c, z) is the truncation error term.
Substituting Egs. (4.4) and (4.6) into Eq. (4.1), we obtain a reference equation for
transport equation (2.16),

/Q o (X, P(X, th)) p(P(X, th))C(X, th)z(X, ty) dX
+Atn/ Vz(x, ty) - D(a(X, ty), p(X, th)) Ve, ty) dx
Q
= / B (X, P(X, th—1)) p(P(X, th-1))C(X, th-1)Z(X, t1 ;) dX
Q

— Atn/ c*(x, th)a(x, th) z(x, tn) dx + E(c, 2), 4.7)
Q
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with

th
E(c.2) = / / oy, 0) [(qsp)az(ﬁ@) o Vz(y.0)| dyds
tho1 JQ

d
+ Ep(c, 2) — Eq(c*, 2). (4.8)

4.2. An ELLAM Scheme

We derive an ELLAM scheme for the transport equation (2.16), based on the refere
equation (4.7). Let and J be the numbers of grid blocks in theand y directions,
respectively. We define a spatial partition @n= (ay, bx) x (ay, by) as

a = X5 <X{ <--- <X’

c c__
C<ee <X < X; = Dby,

c c c c c (4'9)
ay=Yo<YI< - <Yj<--<VYji<Yi=by,

with AX*=x—x", fori=1,2,...,1, andAyf:ij - yffl for j=1,2,...,J. The
spatial partition (4.9) does not necessarily have to be the same as the spatial partition
for the pressure equation.

We define the trial and test function spaces to be the space of continuous and piece
bilinear polynomials orf2 with the spatial partition (4.9)

S(Q) = M{[ax, b] x M[ay, by, (4.10)
where
MZlax. by] = {v(x) € C%ax, bl [v(0) € Pu[x® . x7], i =1.2,.... 1},
Milay, by] = {”(X) € CO[ay, byl lv(x) € Pl[yjcil, yﬂ i=12..., J}. (4.11)

HereCY[a, b] is the space of continuous functions aRglis the space of linear functions.

Under the assumption that the pressprgx, t,) and the mass flow ratey(x, ty) in
Eq. (2.16) are known, the ELLAM scheme can be defined as followsnEat, 2, ..., N,
find ¢, (X, t,) € S(2) such that

| #0 Prx t) o (.t s, i, )
LAt /Q V20X, t) - D(@n(X, ta), Pa(X, 1)) VCn(X, ty) d
= /Q @ (X, Pn(X, th-1)) 2 (Pn(X, th-1))Ch (X, th_1)Zn (X, ;) dX
—Atn/Qc*(x, t)a(X, th)zn (X, ty) dX Vzh(X, tn) € S(Q), (4.12)

with ¢, (X, 0) € S°(2) being an approximation ) (x).

Remark 4.1. First, by using a characteristic tracking, the ELLAM scheme (4.12) signi
icantly reduces the temporal truncation errors and generates accurate numerical solt
even if very large time steps are used. Second, the ELLAM scheme conserves mass
33], which is of essential importance in applications. Third, the ELLAM scheme (4.1
symmetrizes the governing transport PDE (2.16) and generates a nine-banded, syn
ric and positive definite coefficient matrix, which is identical to the coefficient matrix fc
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parabolic equations discretized by a standard finite element method. Finally, the aut
previously performed extensive numerical experiments for one- and two-dimensional lir
transport equations, which show that ELLAM schemes often outperform many widely u:
and well-received numerical methods [1, 56]. Note that once the prepsamd the mass
flow rate o are known, the transport equation (2.16) is, in principle, a linear advectio
diffusion transport PDE. Hence, we anticipate that the ELLAM scheme (4.12) will gener
accurate numerical solutions for the system (2.12)—(2.17). In Section 6, we will perfc
the numerical experiments to observe the performance of the ELLAM scheme.

Remark 4.2. In the ELLAM scheme (4.12)h (X, th) € S°(2) andzy (X, ty) € S(2) are
piecewise-bilinear functions at timie Hence, all the terms but the first one on the right-han
side in Eq. (4.12) are standard integrals for finite element methods and can be evall
by standard methods. Inthe first term, the value,of, t,_1) is known for the solution at the
previoustime step,_;. Butthe test functiom, (x, tntl) =limi1, =1, ,Zn(X, 1) = Zn(X*, 1),
with x* =r (ty; X, th_1) being the point at the head of the characteristic that correspomds t
at the foot. The evaluation of this term is a very challenging issue, due to the deformatio
each cell k°_;, X°T x [y_4, yj] on which the test functions are defined as the geometry
backtracked from time step to time stept,_1. The most practical approach for evaluating
this term is to use a forward-tracking algorithm [46]. This would enforce an integrati
guadrature at time step_; with respect to the fixed spatial grids (4.9) on whixR, t,_1)
is defined. The evaluation of the test functigr, t ,) is difficult. Rather than backtracking
the geometry and estimating the test functions by mapping the deformed geometry ont
fixed grids (4.9), we will forward track discrete quadrature points chosen on the fixed ¢
at the time step,_; to time stept,, where evaluation af;, (X, t) is straight forward. Notice
that this forward tracking has no effect on the solution grid (4.9) or the data structure
the scheme (4.12). Therefore, this forward-tracking algorithm avoids the complicatior
distorted grids of previous forward-tracking methods or the complication of backtracki
geometry of backtracking methods.

Remark 4.3. For a general mass flow rate fiede(x, t), porosity¢ (x, p) and density
p(p), one cannot analytically solve the initial-value problem (4.9) to track the charact
istics. Hence, numerical means have to be used to approximate the characteristics. |
context of linear transport PDEs where the fluid velocity is assumed to be a known smc
function, we were able to utilize Euler quadrature or a Runge—Kutta quadrature to tr
characteristics and to obtain accurate numerical solutions [56]. However, in the ELL/
scheme (4.12), the mass flow rat€x, t,) is given as a Raviart—Thomas solution to the
pressure equation (2.14). Thus, the Euler and Runge—Kutta methods used in [56] and \
ally all quadratures based on the numerical solutions of ordinary differential equations v
smooth right-hand sides could introduce fairly large errors to the characteristic track
procedure. These errors in turn affect the accuracy of the numerical solutions of ELL/
schemes.

Note that in applications the porosify and p are constant on each cell and that the
flow rateo, is a Raviart—Thomas solution. Therefore, we can analytically solve a modifi
initial-value problem

gi = (% n) ;0 €[t t],
0 @, Pa(X th))p(Pr(X, th) (4.13)
r@; X, Hlg=t =X
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on each cell to track the characteristics on a cell-by-cell basis [32, 40, 48]. In this appro
we significantly improve the accuracy of the characteristic tracking and greatly minimize
effect of the point source and sink singularities on the characteristic tracking. Furtherm
because the mass flow rat@xactly satisfies the no-flow boundary condition (2.19) duetoii
treatment as an essential boundary condition in the MFEM scheme (3.9), the characte
tracking determined by Eq. (4.13) never runs out of the physical dofaamd avoids
the loss of mass in the ELLAM scheme (4.12). This is another advantage of the ELL/
scheme when applied to the system (2.12)—(2.17).

5. AN ELLAM-MFEM SOLUTION TECHNIQUE FOR SYSTEMS
OF COMPRESSIBLE FLUID FLOWS IN POROUS MEDIA

In this section, we develop an ELLAM-MFEM sequential solution technique for systel
of compressible fluid flows in porous media, which are given by Egs. (2.12)—(2.17). As
discussed in Remarks 2.1-2.3, the numerical simulation of these systems encounters s
difficulties and complexities, including the advection dominance of the advection—diffus
transport PDE (2.16) and the moving steep fronts present in its solutions, the nonline:
and close couplings between the equations in the system, the singularities of the solutic
point sources and sinks, the strong heterogeneity of the porous medium, the compressi
of the fluid mixture and the medium, the large mobility ratio in displacement processes,
enormous size of field-scale application, and the required long time period of predictior
blind linearization with little regard to the properties of the equations or the solutions ¢
result in extremely large, ill-conditioned, nonlinear systems. The accurate solution of th
equations can be extremely difficult and expensive. These issues, if not treated carefully,
destroy the usefulness of the simulation. Fully coupled and fully implicit methods, whi
solve all of the coupled nonlinear PDEs in an implicit fashion and which have been wid
used in large-scale simulators in industry, are very stable and robust even if large time ¢
are usedinasimulation. Butthey are fairly expensive to solve pertime step and are very ¢
sive. Because of the effect of the strong temporal errors, the time steps must still be restr
in size, not due to the stability restriction but for the purpose of accuracy of a simulatio

In this section, we develop an ELLAM-MFEM sequential solution technique for syste
(2.12)—(2.17), in which we use the ELLAM scheme (4.12) to solve the transport equa
(2.16) and the mixed finite element method (3.9) to solve the pressure equation (2
Notice that in subsurface porous medium fluid flow processes, the mass flawisdtarly
smooth outside neighborhoods of the point sources and sinks. Therefore, we allow the
of coarser spatial grids (3.5) for the pressure equation (2.14) than the spatial grids (4.¢
the transport equation (2.16).

To derive an ELLAM-MFEM iterative solution procedure, we define the following af
proximations to the pressum (X, t,), the mass flow rate,(x, t,), and the concentration
ch(X, ty) by using extrapolation operators

Eif (X th) = f(X, th-1), n=12...,N, (5.1)
and
Eof (X tn) = { foch, "=t (5.2)
(1+ 2 foothn) — 2= f(Xth2), n=23...,N

Here f could be the pressung, or the concentration;,.
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Recalling the hyperbolic nature of the transport equation (2.16), we can also define
extrapolation along the characteristics for the concentratipn

Esch(X, th) = ch(X*, th_1), n=12,...,N. (5.3)

wherex* is the foot of the characteristic¢ =r (t,_1; X, t,) defined by the ODE

ar _ (X, th-1) 6 c st
d6 " $(X, Pr(X. th-1)p(Pr(X. th-1))’ nob
(5.4)
r@: X, th)lo=t, = X.
We next define a weighted iteration operaftgrby
fOX, tn),
F,f™x.t,) = (X, tn) 5)
(1= ) f M2, tn) + of ™D (x, 1),

where O< w < 2 is a weighting parameter for the iterative proceddr®& could bepﬁm) or
ci™ defined in the ELLAM-MFEM solution procedure below.

With these notations introduced, we now define an ELLAM-MFEM iterative sequent
solution procedure for systems of compressible fluid flows in porous media, which
defined by Egs. (2.12)—(2.17), as follows:

A. Initialization : n=0
Al: Define(pr(Xx, 0), oh(X, 0)) € S7(R2) x SP(R2) by a stationary analogue of Eq. (3.9)

/ 1 (Co(-)) KL(on(-. 0) — oo(")) - Viy dX — /(ph(-, 0) — po(-))V - Vhdx = 0,
a P(Po(-) Q (5.6)

/Qth (on(0) —o0()dx =0,  V(vh, wn) € F(Q) x SP(Q),

with

~ p(Po(x)K

7o) = =t

(Vpo(X) — p(po(x))gVvd), xeQ, te(T]. (5.7)

In the MFEM scheme (5.6), the pressuigx, 0) can be determined up to an arbitrary
constant. Unlike the numerical simulation to incompressible fluid flows (2.20)—(2.21), wh
the additional constant in the pressymgdoes not affect the solution procedure at all, ir
the current context the additional constant in the presppi@fects both Egs. (2.14) and
(2.16). To uniquely determine the pressyxgx, 0) while maintaining the conservation of
mass, we impose the condition

/ph(-,O)dx=/ Po(+) dX. (5.8)
Q Q
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A2: Definecy (x, 0) € S°(R2) to be thel 2-projection ofty(x), whichis givenin Eq. (2.18)
/ cn(-, 0)z dx = / Co(-)Zn(+) dx, vz € (). (5.9)
Q Q

B. Time Stepping Procedure
forn=1,2,...,Ndo
B1. Projection Step
A. Find the solution pa|(ph )(x th), oy, )(x th)) € §7(Q2) x SP() such that

/ H(EC(, tn))
o P(Epn(:, th))

- / P(Epn(-, t))gV d - vy dx,
Q

Ko@(, t) - vp dx—/ PO (-, t)V - Vh dX
Q

Aty / whV - o (-, to) dx + / Sp(Eph(-, t)) PR (-, tn)wn dX (5.10)
Q Q

— At / A, toywn dx + / So(EPh (- 1) P (- ta_1)wn dx.
Q Q
Y(Vh, wp) € §F(2) x SP(Q).
In Eq. (5.10),Eph (X, ty) could be eitherE; pn (X, t,) or Exph(X, ty) that are defined in
Egs. (5.1) or (5.2)Ea, (X, ty) could be one of th&;c, (X, tn), ExCh(X, t,), andEgch (X, tn)

that are defined in Egs. (5.1)—(5.3).
B. Find the solut|0n:(°) (X, tn) € S°(Q2) such that

/ (- PO 1) o (PO (1))@ (- t)Zn (-, ) dx

+ Aty / V(1) - D(@@ . tn). PO, ) Vn(-, t) dx
Q

(5.12)
= / ¢(7 ph('» tn—l))p(ph(a tn—l))ch(a tn—l)zh(" tr-]";]_) dX
Q
— Aty / C* (-, tn)a(, th) Zn (-, ty) dX, Vzp(-, tn) € SY(Q),
Q
To evaluatez, (x, t ;), we define a characteristi¢o; x, th_1) by

dr o (x, tn)

-5 = 0 € [th—1, tl,

de x, pQ(x, t Ox, t
o (X, P (X, t) p (PR (X, 1)) (5.12)

r(e, X, tn71)|9=tn_1 =X.

Then we evaluate, (X, t _ 1) =2zh(X, ty) with X =r (ty; X, th_1).
B2. Iteration Step:
if ERROR> TOLERANCEthen
m=m+ 1.
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A. Find the solution pait pi™ (X, tn), 1™ (X, tn)) € S7(2) x SP(€2) such that

( (m)( t”)) 71 (m) / (m)
—_ 7 th dx — t)V - vhd
/Qp(F p(m)( tn)) (-, th) - VR dXx P, G, )V - vpdx

:/ (Fupi™ (. t0)) gV d - v dX,

Q

Atn/whv.aﬂ“)(.,tn) dx+/sp(|: P t) PG twhdx (5.13)
Q

—Atn/CI( tn)whdx+/3p(F p(m)( tn))p ) (-, th—p)wp dX,
Y (Vh, wh) € %(Q) x SP(Q).

B. Find the solutiore™ (x, tn) € S*(2) such that
/¢( P Cot)) o (PR o tn)C™ G t) Zn (-, t) dx
Q

1At / V2u( tn) - D(@™ (), B € t) VA (- ) dx

(5.14)
/¢( Pn (-, ta—1) (P (-, th-1))Ch (-, tho1) Zn G, 1) dx
— Aty / A ZC ) X, VZn( ty) € SQ).
Q
To evaluatez, (X, t 1) in Eq. (5.14), we define a characteristi@; x, t,_1) by
dr o™ (X, tn)
- = ) 0 € [th-1. tn],
do X, P (%, tn)) o (PR (X, tn)
~ $(x. pf )o (P ) (5.15)

r@: X, th-1lo=t,, = X.

Then we evaluate, (X, t _1) =2zh(X, ty) with X =r (tq; X, th_1).
else
We define

PR t) = PaP (% 1), or(t) = on (% t),  Ch(%th) =iV (X, th). (5.16)

endif
end do

6. NUMERICAL EXPERIMENTS

In this section, we present numerical results for several different types of simulatic
for compressible fluid flows in porous media to observe the performance of the ELLA
MFEM solution procedure. The numerical experiments simulate compressible fluid fl
processes within a horizontal reservoir of one unit thickness over a period of 15 ye
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TABLE 6.1

Data Used in the Numerical Simulations
Spatial domain @ = (0, 1000)x (0, 1000) f¢
Time period of simulation [0, TE [0, 5400] days (i.e., 15 years)
Reference porosity ¢ =0.1
Compressibility of the medium ¢, = 0.000001.
Reference density o = 0.8 glcni = 49.942 |b/ft
Compressibility of the fluid ¢, = 0.0001
Reference pressure p. = 1 atm.=14.696 psia
Viscosity of the resident fluid (oil) no=1cp
Location of the injection well (1000, 1000) (i.e., the upper-right corne pf
Location of the production well (0, 0) (i.e., the lower-left corneknf
Injection rate Q = 30 fé/day
Injection concentration ¢ =10
Production rate Q = —30 ft?/day
Initial pressure Po(X, y) = 3000 psia
Initial concentration Co(x,y) =0.0
Grid size for pressure AXP = AyP =251t
Grid size for concentration AXP = AyP =251t
Time step At = 360 days=1 year

(5400 days), for one-quarter of a regular five-spot pattern with injection and product
wells at the corners. The test runs include problems with adverse mobility ratios, ter
dispersion models with various amount of diffusion and dispersion, heterogeneous pe
abilities, and heterogeneous media. Few reported data and results can be found in the
ature on numerical simulations to the system (2.12)—(2.17), especially with character
methods. Hence, whenever it is possible, we try to choose test problems for correspor
incompressible fluid flows (2.20)—(2.21) with reported data and results in the literatt
This (i) helps us understand whether the ELLAM-MFEM solution procedure genera
physically acceptable solutions and (ii) serves as a way to compare the ELLAM-MFI
solution procedure with many well regarded methods. We understand that this would
the ELLAM-MFEM solution procedure at a disadvantage, because it is used to simulate
compressible fluid flow system (2.12)—(2.17) that has much stronger nonlinearity and «
plings than the incompressible fluid flow system (2.20)—(2.21) simulated by other methg
The data used in these experiments are given in Table 6.1.

In Table 6.1,Q = 30 ft?/day is the volumetric flow rate of injection (or productionQf
is negative) in the well cells (recall that we have averaged all the physical quantitiein tl
direction in deriving system (2.12)—(2.17)). The mass flowgateEqs. (2.14) and (2.16) is
equal to the product of the mass dengignd the quantity per unit volume [24, 38]. In the
numerical experiments, we use a uniform spatial partiiaf = AyP = Ax® = Ay® =251t
(i.e., 40x 40 spatial cells) on the domain, although we understand that a nonuniformn
partition with finer cells around wells could probably generate more accurate soluti
and our simulator allows a general partition. We also use an extremely large time
of At =360 days (1 year). In contrast, in the numerical results reported in the literat
previously, the time steps used range fraifiew daydor finite difference or finite element
simulators to abou monthfor MMOC-based simulators [4, 24, 27, 38, 45, 49, 58] eve
for the relatively simpler incompressible fluid flow system (2.20)—(2.21).
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6.1. Test Problem I: Numerical Simulation in Homogeneous Media

In this section, we carry out numerical simulations to the system (2.12)—(2.17) of cc
pressible fluid flows through homogeneous and isotropic porous media. Besides tho:
Table 6.1, additional data used in the numerical simulations are presented in Table 6.2

6.1.1. Experiments .1

In this group of experiments, we perform numerical example runs for porous medi
fluid flows, under somewhat idealized assumptions that the mobility ratio between
resident and injected fluids 8 =1 and that only molecular diffusion is present in the
physical diffusion—dispersion relation (i.eDy, = ¢, dy = 0.5 ft?/day, D; = ¢, d, = 0.0 ft,
and D; = ¢, d; = 0.0 ft). This example has been widely used in the performance testing
a simulator since the qualitative behavior of the physical process is understood fairly \
in this case.

The surfaces and contour plots of the simulation=aB8 years (1080 days), ti= 7 years
(2520 days), at =10 years (3600 days), andtat 15 years (5400 days) are presented ir
Fig. 1. Itis observed that the solutiontat 3 years is a family of concentric circles, as one
should expect since the molecular diffusion is homogeneous and the mobilityvratia.
These results are physically reasonable due to the following reasons: (i) The mobility r
M =1 implies that the fluid has a constant viscogitic) = 1 (0). (ii) The facts thaK is a
constant tensor and that the reservoir is horizontal lend us to conclude that the mass
rateo is actually radial. (iii) Only the molecular diffusion, which is isotropic, is assumed t
be present. Since in this case the mathematical model does not include any permeabil
viscosity variations or mechanical dispersion effects, any fingering phenomenon, if pres
would be due to numerical errors and not to the modeling of any physics.

Ideally, if the production well is located at infinity, the solutions should maintain the for
of afamily of concentric circles that will diffuse gradually. In the current context, because
the effect of the no-flow boundary conditions and the production well, the invading fluid
expected to move toward the production well faster along the diagonal (flow direction). T
trend has been observed from the solutiorts-a¥ years and becomes more obvious in the
numerical simulations dt= 10 years. Byt = 15 years, these figures show that the injecte
fluid has swept all the reservoir and has demonstrated a virtually perfect recovery of
oil in this idealized situation. These results illustrate that even though extremely large t

TABLE 6.2
Additional Data Used in the Experiments 1.1 and 1.2

Data used in Experiments I.1

Permeability tensor Kux = Kyy =80 md andk,, =kyx =0 md
Mobility ratio M=1
Molecular diffusion coefficient Di = ¢, 0 = 0.5 ft?/day

Mechanical dispersion coefficients D, = ¢,d =0.0 ftandD; = ¢,d; =0.0 ft

Data used in Experiments 1.2

Permeability tensor Kux = Kyy =80 md andk,, =kyx =0 md
Mobility ratio M =41
Molecular diffusion coefficient D = ¢, 0y = 0.0 ft?/day

Mechanical dispersion coefficients D, = ¢,d =2.0 ftandD; =¢,d, =0.2 ft




COMPRESSIBLE FLUID FLOWS 365

Nl i \\\\\\‘
i,
B A

il

il

1000

0 o 0 100 200 300 400 500 600 700 800 900 1000

207722
pllerssszeszs: 3
s S
T R
s S ST T
I MM“\\“\\\\\‘“\\\\\

Vit
’Ill”'/lfl'”'lff”"'f"‘?’o“‘:&‘\\\x\‘&\\\\\\\\\\\\\\

e
SRR
SR

400

/
Al
il
AT an

LT 88}
iy, st

LTSS 200,
S NI S5S

LRSS 1000
\\\\“\\“‘2”“"

e
R e e NN 600 100]
aon” TN

400
200
() 0 100 200 300 400 500 600 700 800 900 1000

FIG. 1. The concentration plots of the invading component in Experiments 1.1 at 3 and 7 years (A-D),
at 10 and 15 years (E-H). (A) Surface plottat 3 years. (B) Contour plot dt=3 years. (C) Surface plot at
t=7 years. (D) Contour plot &= 7 years. (E) Surface plot &= 10 years. (F) Surface plot &= 15 years.
(G) Contour plot at =10 years. (H) Contour plot at= 15 years.

steps and fairly coarse spatial grids have been used in the simulation, the ELLAM-MF
simulator still generates physically acceptable solutions.

6.1.2. Experiments 1.2

In this group of experiments, we consider a more realistic simulation in which an adve
mobility ratio of M =41 is used and an anisotropic physical dispersion in tensor form
assumedDy, = ¢, dy, = 0.0 ft?/day, Dy = ¢, d, = 2.0 ft, andD, = ¢, d; = 0.2 ft). The surfaces
and contour plots of the simulationtat 3 yearst =7 yearst = 10 years, antl= 15 years
are presented in Fig. 2.

A severe difficulty in the numerical modeling of reservoir simulation is the need to i
corporate in the simulation models the bypassing of hydrocarbon due to a viscous finge
phenomenon. Due to the effect of the large adverse mobility khtio4 1, the viscosity: (C)
changesrapidly acrossthe steep fluid interface. Consequently, the velocity has a rapid cl
across the fluid interface. Moreover, the large differences in longitudinal versus transv
dispersion levels force the fluid flow to move much faster along the diagonal direction (fl
direction) from the injection well to the production well. The plotsin Fig. 2 show that the co
centration front moves fairly fastin the diagonal direction, which exactly reflects the physi
phenomenon of this case. From the point of view of petroleum recovery, this means a n
less effective recovery is expected in a realistic petroleum displacement process than
idealized process in Experiments I.1. We will address this issue more in the next subsec
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FIG. 1—Continued

6.2. Test Problem II: Numerical Simulation in Substructured Media

We consider a numerical simulation to system (2.12)—(2.17) in a substructured medi
The data are given in Table 6.3 in addition to Table 6.1. The surfaces and contour [

of the simulation at

=3 yearst =7 yearst =10 years, and = 15 years are presented

in Fig. 3. From these plots, we have the following observations: (i) The ELLAM-MFEI!

TABLE 6.3
Additional Data Used in Experiments Il

Data in subdomai®®

Subdomain Q® = (175, 600)x (175, 600) ft
Permeability tensor Kux = Kyy =40 md andk,, =kyx =0 md
Mobility ratio M =41

Reference porosity ¢ = 0.09

Molecular diffusion coefficient Din = ¢ d, = 0.0 ft?/day

Mechanical dispersion coefficients D, = ¢,d =1.8 ftandD; =¢,d, =0.18 ft
Data in subdomai®®

Subdomain QP =Q-—Q®

Permeability tensor Kux = Kyy =80 md andk,, =kyx =0 md

Mobility ratio M =41

Reference porosity ¢ =0.1

Molecular diffusion coefficient Dm = ¢ 0y, = 0.0 ft2/day

Mechanical dispersion coefficients D, = ¢,d =2.0ftandD; =¢,d; =0.2 ft
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FIG. 2. The concentration plots of the invading component in Experiments 1.2 at 3 and 7 years (A-D),
at 10 and 15 years (E-H). (A) Surface plottat 3 years. (B) Contour plot d&= 3 years. (C) Surface plot at
t =7 years. (D) Contour plot at=7 years. (E) Surface plot at=10 years. (F) Surface plot &t=15 years.
(G) Contour plot at =10 years. (H) Contour plot at= 15 years.

solution procedure developed in this paper generates physically acceptable solutions
compressible fluid flow through a substructured medium, even though a fairly coarse sp
grid and an extremely large time step are used in the simulation. This in turn implies sig
icantly improved computational efficiency. (i) The comparison of these results with thc
in Experiments 1.2 shows that whenever possible, one should place the production we
a low-permeability zone to increase the area swept by the injecting fluid (or equivalel
the efficiency of the petroleum recovery). This illustrates how the results of numerical s
ulations could help decision making in the petroleum reservoir industry. (iii) An importe
technique in enhanced oil recovery is the use of polymers in flooding processes to
the permeability of the reservoir porous medium to allow flow in certain ways. Since f
polymers are highly viscous, they can be used to selectively block or reduce the perme
ities of certain pores or flow regions to direct the flow in a manner to optimize hydrocart
recovery. The numerical results in this section could also serve as a demonstration fol
technique. In this case, the properties of the original fluid and porous medium are gi
in Table 6.2, while the data in Table 6.3 can be viewed as the altered properties afte
injection of some polymers. Then, the solutions in Figs. 2 and 3 illustrate that the disple
ment process in Experiments Il sweeps much larger area, which in turn implies a gre
improved efficiency of the recovery process.
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FIG. 2—Continued

6.3. Test Problem Ill: Numerical Simulation in Layered Media

In this section, we carry out numerical simulations to compressible fluid flow proces
in layered media, which are often encountered in many field applications.

6.3.1. Experiments 111.1

We simulate fluid flows in a layered medium in which one highly permeable zone
located between two low permeable zones. The data are given in Table 6.4. The su
and contour plots of the concentration of the invading fluid &t3 years,t =7 years,

t =10 years, and = 15 years are presented in Fig. 4. From Figs. 4A and 4B, we see tl
the concentration front initially moves faster in the vertical direction than in the horizon
direction, because the subdomsiff has a larger permeability and, thus, the mass flow ra
o than that on the subdomage(?. Once the invading fluid reach€X?, the concentration
front moves much faster in the horizontal direction@® than onQ® U Q® and exhibits
the behavior of a layered flow, due to the same reason. This trend continues as the
evolves, as shown in Figs. 4C—4H.

6.3.2. Experiments 111.2

We consider the simulation in a layered medium with one low permeable zone betw
two highly permeable zones, with the data being given in Table 6.5 and the surface and
tour plots of the concentration of the invading fluid at 3 yearst =7 yearst = 10 years,
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TABLE 6.4
Additional Data Used in Experiments Ill.1

Data in the first and third laye®@® U Q©®

First layer Q® = (0, 1000)x (0, 325) f¢

First layer Q® = (0, 1000)x (675, 1000) ft
Permeability tensor Kux = Kyy =30 md andk,, =kyx =0 md
Mobility ratio M =41

Reference porosity ¢ =0.1

Molecular diffusion coefficient
Mechanical dispersion coefficients

Di = ¢ d, = 0.0 ft?/day

D, = ¢,0, =2.0 ftandD, = ¢, d, = 0.2 ft

Data in the second lay&t®

Subdomain

Permeability tensor

Mobility ratio

Reference porosity

Molecular diffusion coefficient
Mechanical dispersion coefficients

Q@ = (0, 1000)x (325, 675)
Kux = Kyy =80 md andk,, =kyx =0 md

M =41
¢ =0.1

D = ¢ dry = 0.0 ft2/day

D =¢,d=20ftandD, =¢,d, =0.2 ft
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FIG. 3. The concentration plots of the invading component in Experiments Il at 3 and 7 years (A-D), ¢
at 10 and 15 years (E-H). (A) Surface plottat 3 years. (B) Contour plot dt=3 years. (C) Surface plot at
t =7 years. (D) Contour plot at=7 years. (E) Surface plot at=10 years. (F) Surface plot &= 15 years.
(G) Contour plot at =10 years. (H) Contour plot at= 15 years.
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TABLE 6.5
Additional Data Used in Experiments 111.2

Data in the first and third laye@® U Q©

First layer Q® = (0, 1000)x (0, 325) f2

First layer Q® = (0, 1000)x (675, 1000) ft
Permeability tensor kex = kyy =80 md andky, =Kkyx =0 md
Mobility ratio M =41

Reference porosity ¢ =0.1

Molecular diffusion coefficient D = ¢, dn = 0.0 ft?2/day

Mechanical dispersion coefficients D, = ¢,d =2.0 ftandD; =¢,d; =0.2 ft

Data in the second lay&2®
Subdomain Q@ = (0, 1000)x (325, 675)

Permeability tensor kex = kyy =30 md andky, =Kkyx =0 md
Mobility ratio M =41

Reference porosity ¢ =0.1

Molecular diffusion coefficient D = ¢, dn = 0.0 ft?2/day

Mechanical dispersion coefficients D, = ¢,d =2.0 ftandD,; =¢,d; =0.2 ft

FIG. 3—Continued
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FIG. 4. The concentration plots of the invading component in Experiments Ill.1 at 3 and 7 years (A—
and at 10 and 15 years (E-H). (A) Surface plot &3 years. (B) Contour plot at=3 years. (C) Surface plot
att =7 years. (D) Contour plot d@t=7 years. (E) Surface plot &t= 10 years. (F) Surface plot &= 15 years.
(G) Contour plot at =10 years. (H) Contour plot at=15 years.

andt =15 years being presented in Fig. 5. They show that the concentration front sl
down once it moves into the subdomait?, because2® has a smaller permeability
and, thus, smaller mass flow ratdis larger than that on the subdoma. The plots at

t =7 years and = 10 years demonstrate that the concentration front at the right h&f of
is rapidly catching up with the main flow path in the diagonal direction and forms so
fingering. The corresponding displacement process of the invading fluid becomes n
more complex and the fingering phenomena occurs.

In summary, the numerical simulation of fluid flow processes in multi-layered porc
media could encounter serious fingering problems. Note that the governing equations (:
and (2.16) in the systems of compressible fluid flows (2.12)—(2.17) are obtained vi
volume averaging mechanism that does not model physical behavior on a pore-vol
scale. Because the mathematical model now includes differences in longitudinal ve
transverse dispersion levels, these equations should model the corresponding behav
the flow in the form of a macroscopic fingering phenomenon due to varying flow velociti
which should propagate and grow in a manner similar to viscous fingering on a sme
scale.
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7. SUMMARY AND CONCLUSIONS

In this paper we develop an ELLAM-MFEM sequential decoupling and linearizatic
solution procedure for compressible fluid flows in porous media with point sources ¢
sinks (injection and production wells), in which we use an Eulerian—Lagrangian locali:
adjoint method to solve the transport equation (2.16) for the concentiatad a mixed
finite element method to solve the pressure equation (2.14) for the prgsantethe mass
flow rateo. The ELLAM-MFEM solution procedure symmetrizes the governing transpc
equation, and greatly reduces or eliminates non-physical oscillation and/or excessive
merical dispersion present in many large-scale simulators that are widely used in indus
applications. In addition, the ELLAM-MFEM solution procedure conserves mass and tre
boundary conditions in a natural manner. The numerical experiments also illustrate tha
ELLAM-MFEM solution procedure can simulate compressible fluid flows in porous mec
accurately with fairly coarse spatial grids as well as very large time steps, which are m
larger than the time steps used in the MMOC-MFEM sequential solution procedure |
one or two orders of magnitude larger than those used in many large-scale simulator
this manner, the ELLAM-MFEM solution technique has a greatly improved computatior
efficiency over many other methods. Finally, the ELLAM-MFEM technigue can treat lar
adverse mobility ratios, discontinuous permeabilities and porosities, anisotropic disper
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FIG. 5. The concentration plots of the invading component in Experiments Il.2 at 3 and 7 years (A-|
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(G) Contour plot at =10 years. (H) Contour plot at= 15 years.

in tensor form, compressible fluid and media, heterogeneous media, and point source
sinks.

Because system (2.14)—(2.16) and its variety of maodifications hold in many applicatic
the ELLAM-MFEM solution technique (possibly with slight modifications) developed i
this paper could be applied to many other fields in addition to petroleum reservoir simulat
For example, the ELLAM-MFEM technique can be used in the simulation of subsurfz
environmental modeling and/or remediation in fully saturated zone, since the mathema
model (2.14)—(2.16) still holds in this case. For a subsurface flow process througt
unsaturated zone above the water table, the pressure PDE (2.14) could be replaced |
Richards equation [44], while the tranport PDE (2.16) still holds. The Richards equat
can be solved by an appropriately modified version of the MFEM scheme in Section 3 |
[9] and the references therein), while the transport equation (2.16) can be solved aga
the ELLAM scheme in Section 4. In principle, we can apply the ELLAM method to sol\
the systems in which the transport PDEs are linear in their primary unknown variables.
refer readers to the work of Ewing [25] if the transport PDEs are nonlinear in the prim:
unknowns.
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