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We develop an ELLAM-MFEM solution procedure for the numerical simulation of
compressible fluid flows in porous media with point sources and sinks. An Eulerian–
Lagrangian localized adjoint method (ELLAM), which was previously shown to
outperform many widely used and well-regarded methods in the context of linear
transport partial differential equations, is presented to solve the transport equation for
concentration. Since accurate fluid velocities are crucial in numerical simulations, a
mixed finite element method (MFEM) is used to simultaneously solve the pressure
equation as a system of first-order partial differential equations for the pressure
and mass flow rate. This minimizes the numerical difficulties occurring in standard
methods caused by differentiation of the pressure and then multiplication by rough
coefficients.

Computational experiments show that the ELLAM-MFEM solution procedure
can accurately simulate compressible fluid flows in porous media with coarse spatial
grids and very large time steps, which are one or two orders of magnitude larger
than those used in many numerical methods. The ELLAM-MFEM solution tech-
nique symmetrizes the governing partial differential equations, and greatly reduces
or eliminates non-physical oscillation and/or excessive numerical dispersion present
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in many large-scale simulators that are widely used in industrial applications. It con-
serves mass and treats boundary conditions in a natural manner. It can treat large
adverse mobility ratios, discontinuous permeabilities and porosities, anisotropic dis-
persion in tensor form, compressible fluid, heterogeneous media, and point sources
and sinks. c© 2000 Academic Press

Key Words:advection–diffusion equations; characteristic methods; compressible
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1. INTRODUCTION

The objective of petroleum reservoir simulation, environmental modeling, and many
other important applications is to predict the complex chemical, physical, and fluid flow
processes occurring in subsurface porous media sufficiently well to optimize the recovery
of hydrocarbon or to accurately predict and thoroughly remediate the contamination in
groundwater, etc. In order to do this, one must build mathematical models to describe the
essential phenomena and the fundamental laws, and design numerical methods to discretize
these models and to represent the basic features as well as possible without introducing
serious nonphysical phenomena. The mathematical models used to describe these complex
fluid flow processes are strongly coupled nonlinear systems of partial differential equations
(PDEs) and constraining equations. These systems are characterized by strong nonlinearity
and coupling among these equations, the advection dominance of the transport equation
and the moving steep fronts present in the solutions to this equation, the singularities of the
solutions at point sources and sinks (i.e., injection and production wells), the compressibility
of the fluid mixture and the medium, the strong heterogeneity of the media, the large adverse
mobility ratio in the fluid flow processes, the anisotropic dispersion in tensor form, the
enormous size of field-scale application, and the required long time period of prediction.
Because of these salient features, the numerical simulation to these systems encounters
severe difficulties.

Space-centered finite difference or finite element methods (FDMs, FEMs) often generate
numerical solutions with severe non-physical oscillations. In industrial applications, up-
stream weighting techniques are commonly used to stabilize the numerical approximations
to these systems in large-scale simulators. However, these methods produce excessive arti-
ficial numerical dispersion and potentially spurious effects related to the orientation of the
grid [24]. Many attempts have been made to develop numerical methods that overcome these
difficulties and allow accurate numerical solutions with reasonable computational effort.
High-resolution methods, such as the Godunov methods, the total variation diminishing
methods (TVD), and the essentially non-oscillatory (ENO) methods, are well suited for the
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solution of nonlinear hyperbolic conservation laws and the resolution of shock discontin-
uities in the solutions without excessive smearing or spurious oscillations [16, 18, 23, 31,
50, 51, 53]. Moreover, they conserve mass. High-resolution methods have been success-
fully applied in aerodynamics, where the fluids are highly compressible and flows exhibit
shock discontinuities, and have generated very satisfactory results. But these methods are
mostly explicited; the size of the time steps in these methods is subject to the CFL con-
straint. Few references could be found in the literature on the application of high-resolution
methods to porous medium flows, especially in the presence of strongly heterogeneous and
compressible media as well as point sources and sinks.

Because of the hyperbolic nature of advective transport, characteristic methods have been
investigated extensively in numerical simulations of porous medium flows [8, 17, 22, 29,
37, 39–41, 54]. Characteristic methods follow the movement of information or particles as
well as their interactions. Because the solutions are much smoother along the characteristics
than they are in the time direction, characteristic methods allow large time steps to be used in
numerical simulations while still maintaining their stability and accuracy. But characteristic
methods usually require extra implementational effort and raise many implementational and
analytical issues that need to be addressed. Traditional forward or particle tracking methods
advance the grids following the characteristics. They greatly reduce temporal errors and,
thus, generate fairly accurate solutions even if large time steps are used. However, they
often distort the evolving grids severely and greatly complicate the solution procedure. The
modified method of characteristics (MMOC) follows the flow direction by tracking the
characteristics backward from a fixed grid at the current time step and hence avoids the grid
distortion problems present in forward tracking methods [22]. The MMOC symmetrizes and
stabilizes the governing PDEs, greatly reducing temporal errors and therefore allowing for
large time steps in a simulation without the loss of accuracy and eliminating the excessive
numerical dispersion and grid orientation effects present in many Eulerian methods [24, 47].
However, many previous characteristic methods fail to conserve mass and have difficulties
in treating boundary conditions.

Douglaset al. presented and analyzed a sequential linearization solution procedure for the
miscible displacement of one incompressible fluid by another in a porous medium, in which
mixed finite element methods (MFEMs) are employed to approximate the pressure, and
the Darcy velocity and Galerkin FEMs are used to approximate the concentration [20, 21].
Russell first introduced the MMOC into the SPE literature in solving the transport equation in
the system of incompressible fluid flow for reservoir simulation, where the pressure equation
was solved by an FEM with piecewise biquadratic trial and test functions [45]. Ewing,
Russell, and Wheeler combined the ideas [20, 21, 45] and proposed an improved MMOC-
MFEM sequential solution procedure [27] for the miscible displacement of incompressible
fluid flow by using the MMOC to approximate the transport equation and an MFEM for
the pressure equation. The use of MFEM yields accurate Darcy velocity fields, to conserve
mass that conserves mass, while the application of MMOC allows large time steps to be
used in solving the transport equation without loss of accuracy and eliminates the numerical
dispersion and grid orientation effects, which are among the major difficulties presented in
large-scale reservoir simulators widely used in industry applications [4, 6, 15, 24, 28, 38].
However, the MMOC-MFEM solution procedure fails to conserve mass and treats boundary
conditions in anad hocmanner, which seriously affects its application. Finally, despite
the large amount of research conducted on the numerical simulation of incompressible
fluid flows, few numerical experiments have been reported in the literature on numerical
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simulations to compressible fluid flows in porous media, especially with characteristic
methods.

The Eulerian–Lagrangian localized adjoint method (ELLAM) was first presented by
Celia, Russell, Herrera, and Ewing in solving one-dimensional (constant-coefficient)
advection–diffusion PDEs [13, 33]. The ELLAM methodology provides a general char-
acteristic solution procedure for advection–diffusion PDEs and a consistent framework
for treating general boundary conditions and maintaining mass conservation. Thus, it over-
comes the two principal shortcomings of previous characteristic methods while maintaining
their numerical advantages. For example, like the MMOC schemes [22, 27] and many other
characteristic methods, the ELLAM schemes can solve advection–diffusion PDEs accu-
rately regardless of whether the advection or diffusion term dominates the flow process. In
fact, when diffusion dominates a fluid process, the governing transport PDE behaves like a
parabolic PDE. Virtually all numerical methods work well in this case. The authors previ-
ously carried out numerical experiments in the context of one- and two-dimensional linear
transport PDEs [1, 55–57]. These results show that the ELLAM schemes often outperform
many widely used and well-regarded methods.

In this paper we develop an ELLAM-MFEM solution procedure for compressible fluid
flows in porous media with point sources and sinks, which have much stronger coupling and
nonlinearity than incompressible fluid flows. In the ELLAM-MFEM solution procedure,
we use an ELLAM scheme for the transport equation and an MFEM method for the pressure
equation, and derive an iterative procedure for the system of compressible fluid flow. The
ELLAM-MFEM solution procedure can simulate compressible fluid flow in porous media
accurately with coarse spatial grids and very large time steps, which are much larger than
the time steps used in the MMOC-MFEM sequential solution procedure and one or two
orders of magnitude larger than those used in many large-scale simulators. In this manner,
the ELLAM-MFEM solution technique has a greatly improved computational efficiency
over many other methods. The ELLAM-MFEM technique can treat large adverse mobility
ratios, discontinuous permeabilities and porosities, anisotropic dispersion in tensor form,
compressible fluid, heterogeneous media, and point sources and sinks.

The rest of this paper is organized as follows. In Section 2, we derive a mathematical
model for compressible fluid flows in porous media. In Section 3, we outline an MFEM
scheme for the parabolic pressure equation. In Section 4, we present an ELLAM scheme
for the transport equation. In Section 5, we derive an ELLAM-MFEM solution procedure
for the system of compressible flow. In Section 6, we perform different types of numerical
experiments to demonstrate the strength of the ELLAM-MFEM solution procedure. In
Section 7, we summarize the results and draw conclusions.

2. A MATHEMATICAL MODEL FOR COMPRESSIBLE FLUID

FLOWS IN POROUS MEDIA

In this section, we derive a mathematical model for describing compressible fluid flow
processes in porous media that arise in petroleum reservoir simulation, subsurface contam-
inant transport and remediation, and other applications. In these problems, the fluid flow
processes are governed by the mass conservation for the total fluid mixture and for the
invading fluid or solvent, Darcy’s law for momentum, and equations of state that provide
fluid properties.
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2.1. Conservation of Mass for the Fluid Mixture

In this subsection, we derive a governing differential equation that describes the con-
servation of mass for the total fluid mixture. We consider a fluid flow process, in which
the invading fluid and the resident fluid are fully miscible and flow together as one phase
fluid in the porous medium. Because in many cases the thickness of the physical domain is
significantly smaller than its horizontal length and width, we assume that the fluid flow pro-
cess is vertically homogeneous by averaging the physical quantities and medium properties
in the vertical direction and we assume the physical domainÄ ⊂ IR2 with a nonuniform
local elevation. Letu(x, t) = (ux(x, t), uy(x, t)) be the Darcy (superficial) velocity of the
fluid mixture, letρ be the mass density of the fluid mixture, and letφ be the porosity
of the medium (fraction of the total volume available for fluid flow). LetA ⊂ Ä be any
representative volume element; then the conservation of mass states that the rate of mass
accumulated withinA equals the rate of mass flowing into A across the boundary∂A of A
plus the net amount of mass injected intoA via sources and sinks. This statement can be
expressed in an integral form mathematically,

d

dt

∫
A
φρ dx = −

∫
∂A
ρu · n dS+

∫
A

q dx, (2.1)

wheren= (nx, ny) is the unit outward normal to the boundary∂A, andq is the source and
sink term that represents the mass flow rate per unit volume injected into (or produced from)
the volume elementA.

Applying the divergence theorem, we get∫
A

∂

∂t
(φρ) dx =

∫
A
(−∇ · (ρu)+ q) dx. (2.2)

This is in turn written as the following partial differential equation since Eq. (2.2) holds for
arbitraryA⊂Ä:

∂

∂t
(φρ) = −∇ · (ρu)+ q, x ∈ Ä, t ∈ (0, T ]. (2.3)

2.2. Conservation of Mass for the Solute/Solvent in the Fluid Mixture

Let c be the concentration (mass fraction) of the injected fluid of the concerned so-
lute/solvent in the fluid mixture. We can derive a governing differential equation that de-
scribes the conservation of mass for the concerned component as Eq. (2.1). But in this case,
we also need to take into account the effect of the physical diffusion and dispersion of the
component in the fluid mixture. Hence, the conservation of mass is expressed as

d

dt

∫
A
φρc dx = −

∫
∂A
ρ(uc− D(u)∇c) · n dS+

∫
A

qc∗ dx, (2.4)

where (uc−D(u)∇c) is the total (volumetric) flux flowing intoA across the boundary∂A
of A. c∗ is a prescribed concentration at sources (or injection wells) or is equal toc at sinks.
The physical diffusion–dispersion tensor consists of molecular diffusion and (anisotropic
velocity-dependent) mechanical dispersion [4, 7, 38]

D(u) = dmφI + dt |u|I + dl − dt

|u|

(
u2

x uxuy

uxuy u2
y

)
, (2.5)
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with dm being the molecular diffusion coefficient,I being the 2× 2 identity tensor, anddt

anddl being the transverse and longitudinal dispersivities, respectively.
Like the derivation of Eq. (2.3), we rewrite Eq. (2.4) as a partial differential equation

∂(φρc)

∂t
+∇ · (ρuc− ρD(u)∇c) = qc∗, x ∈ Ä, t ∈ (0, T ]. (2.6)

2.3. Darcy’s Law

Darcy’s law establishes the basic relationship between the flow rate or the Darcy (super-
ficial) velocity and the pressure gradient, which is the most widely used law or correlation
for fluid flows in porous media. Letp(x, t) be the pressure of the fluid mixture. Darcy’s law
states

u = − K
µ(c)

(∇ p− ρg∇d), x ∈ Ä, t ∈ [0, T ]. (2.7)

Hereg is the magnitude of the acceleration due to gravity,d(x) is the depth or elevation of
the reservoir, andK is the permeability tensor of the medium given by

K =
(

kxx(x) kxy(x)

kyx(x) kyy(x)

)
, (2.8)

which quantifies the ability of the porous medium to transmit a fluid. In many porous
medium flow applications, the permeability tensorK is a diagonal tensor. Furthermore, the
medium is often isotropic; i.e.,kxx(x)= kyy(x). µ(c) is the viscosity of the fluid mixture,
which is concentration-dependent and is often determined by the mixing rule [24]

µ(c) = µ0[(1− c)+ M1/4c]−4. (2.9)

Hereµ0 is the viscosity of the resident fluid (e.g., oil in petroleum reservoir simulation).
The behavior ofµ(c), as a function ofc, has an extremely important effect on the efficiency
of the displacement process and ultimate oil recovery in petroleum reservoir simulation or
the efficiency in the remediation process in environmental modeling. The behavior ofµ(c)
in turn depends heavily on the mobility ratioM =µ0/µs=µ(0)/µ(1), whereµs is the
viscosity of the invading fluid or solvent in petroleum reservoir simulation or that of the
solute or solvent in subsurface contaminant transport. IfM > 1, the displacement process
has an adverse mobility ratio and the viscous fingering phenomenon is expected to occur.

2.4. Equations of State

Note that the system of partial differential equations (2.3), (2.6), and (2.7) is underde-
termined, since four partial differential equations (note Eq. (2.7) is a vector differential
equation of two components involvingu= (ux, uy)) contain five primary variables (the
densityρ, the pressurep, the Darcy velocityu= (ux, uy), and the concentrationc of the
solute or solvent). Therefore, an additional equation is needed to close the system.

Let V be the specific volume. The compressibility of a fluidcρ is defined to be the rate
of change ofV with respect to the pressurep per unit volume. Mathematically,cρ can be
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expressed by [43, 52]

cρ = − 1

V

∂V

∂p
, (2.10)

where the minus sign in the definition takes into account the fact that the volumeV decreases
as the pressurep increases. Since the densityρ= 1/V , Eq. (2.10) can be rewritten as

cρ = 1

ρ

∂ρ

∂p
. (2.11)

For constantcp, integration of Eq. (2.11) yields an equation of the form

ρ = ρr exp(cρ(p− pr )), (2.12)

whereρr is the reference density at the reference pressurepr . Equation (2.12) and its
simplified versions have been widely used in modeling subsurface contaminant transport
and remediation in the hydroscience community. They can also be applied to compressible
fluid flow processes in a reservoir simulation, unless the fluids contain large quantities of
dissolved gas [38].

Due to the effect of large pressure changes involved in porous medium fluid flow processes
and the type of the medium of the reservoir, the porous medium can deform. In this paper
we consider the following constitutive relation that has been used very often to model the
deformationφ [4, 7, 34],

φ = φr (x) exp(cφ(x)(p− pr )), (2.13)

wherecφ(x) is the compressibility of the medium andφr (x) is the reference porosity of
the medium at the reference pressurepr . The porosity model (2.13) considers only the
volumetric effect of the porous medium deformation caused by the fluid flow process but
not vice versa. If the porous medium consists of stress-sensitive elasto-plastic material, more
accurate (and possibly more complicated) constitutive relations should be used, which could
introduce stronger nonlinearities to the mathematical model through, e.g., thesp(x, p) term
defined in Eq. (2.15). We refer interested readers to [14, 35] for more details.

2.5. A System of PDEs for Compressible Fluid Flow in Porous Media

After we have derived the governing partial differential equations and equations of state
for compressible fluid flows in porous media, we now reformat them into a system of PDEs
and constraining equations. Similarly to the mathematical models for incompressible fluid
flow [7, 20, 21, 24], we combine the governing equation for the conservation of mass of
the fluid mixture (2.3) and Darcy’s law (2.7) to form a system of PDEs for the pressurep
and the flow rate. But in compressible fluid flow processes, the densityρ of the fluid is not
assumed to be constant and cannot be canceled from the governing equation. Hence, the
Darcy velocityu has been used as a primary variable. In the current context, we use the mass
flow rateσ= ρu as a primary variable. We also use Eqs. (2.12) and (2.13) to differentiate
the accumulation term in Eq. (2.3) with respect top, leading to a system of PDEs for the
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pressurep and the mass flow rateσ,

sp(x, p)
∂p

∂t
+∇ · σ = q, x ∈ Ä, t ∈ (0, T ],

σ = ρu = −ρ(p)K
µ(c)

(∇ p− ρ(p)g∇d), x ∈ Ä, t ∈ (0, T ],
(2.14)

wheresp(x, p) is the storage term defined by

sp(x, p) = ∂(φρ)

∂p
= ρ(p)φ(x, p)(cφ(x)+ cρ). (2.15)

We can also rewrite the governing equation (2.6) in terms of the mass flow rateσ as

∂(φρc)

∂t
+∇ · (σc− D(σ, p)∇c) = qc∗, x ∈ Ä, t ∈ (0, T ], (2.16)

where the diffusion–dispersion tensorD(σ, p) is defined by

D(σ, p) = ρ(p)D(u) = dmφ(x, p)ρ(p)I + dt |σ|I + dl − dt

|σ|

(
σ 2

x σxσy

σxσy σ 2
y

)
, (2.17)

with σ = (σx, σy).
Therefore, a mathematical model for describing compressible fluid flows in porous media

is described by a system of partial differential equations (2.14) and (2.16), as well as the
equations of state (2.12) and (2.13) that provide the constitutive relationshipρ= ρ(p) and
φ=φ(x, p). This system also needs to be closed by the initial conditions for the pressure
p(x, t) and the concentrationc(x, t),

c(x, 0) = c0(x), x ∈ Ä,
p(x, 0) = p0(x), x ∈ Ä, (2.18)

and boundary conditions. In petroleum reservoir simulation the boundary∂Ä is typically
impermeable, leading to no-flow boundary conditions of the form [38]

σ · n = 0, (x, t) ∈ ∂Ä× [0, T ],

D(σ, p)∇c) · n = 0, (x, t) ∈ ∂Ä× [0, T ].
(2.19)

These conditions also arise in environmental modeling even though other types of boundary
conditions are possible [7]. For simplicity and definiteness of exposition, we consider
boundary conditions (2.19) and assumeÄ= (ax, bx)× (ay, by) to be a rectangular domain.

Remark 2.1. The system (2.12)–(2.17) is a strongly coupled system of time-dependent
nonlinear partial differential equations and constraining equations. In porous medium fluid
flow processes, diffusion or dispersion is often a small phenomenon relative to advection.
Moreover, laboratory experiments have found that the longitudinal dispersivitydl is typically
considerably greater than the transverse dispersivitydt and that the molecular diffusion
coefficientdm is very small by comparison. Hence, Eq. (2.16) is an advection–diffusion
equation with advection being the dominant phenomenon. In addition, the effective Peclet
number of these problems is large, and sharp traveling interfaces between the injected and
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resident fluids diffuse slowly as they move through the reservoir. Finally, the viscosityµ(c)
in Eq. (2.7) changes very rapidly with the concentration in the neighborhood of the moving
fluid interface and is fairly constant away from the steep front region. In actual reservoir
displacement, the mobility ratioM is usually much larger than 1. Thus, these displacement
processes have a large adverse mobility ratio and viscous fingering instability could occur.

Remark 2.2. For an incompressible fluid flow and medium, the densityρ is a constant
andφ=φ(x) is independent of the pressurep. The system (2.12)–(2.17) is reduced to the
model

∇ · u = q

ρ
, x ∈ Ä, t ∈ (0, T ],

u = − K
µ(c)

(∇ p− ρg∇d), x ∈ Ä, t ∈ (0, T ],
(2.20)

and

φ(x)
∂c

∂t
+∇ · (uc− D(u)∇c) = qc∗

ρ
, x ∈ ω, t ∈ (0, T ], (2.21)

with D(u) being given by Eq. (2.5). The system for compressible fluid flows (2.12)–(2.17)
has much stronger nonlinearity and couplings, due to the effect of the storage termsp(x, p)
and Eqs. (2.12)–(2.13).

Remark 2.3. While the system (2.12)–(2.17) and nonlinear hyperbolic conservation laws
share such common difficulties as moving steep fronts and advection dominance, they also
have salient differences. In aerodynamics, the concerned fluids are mainly gases (air) that are
highly compressible. The solutions to these problems often exhibit “shock discontinuities,”
mainly due to the effect of the nonlinear flux functions and couplings. The interaction of
these shock discontinuities can be extremely difficult to model, to analyze, and to simulate.
In subsurface porous medium fluid flow processes, the major features and/or difficulties
include the nonlinearity and couplings of the differential equations (2.14) and (2.16) as well
as the equations of state (2.12) and (2.13), the singularities of the solutions at point sources
and sinks, the strong heterogeneity of the porous medium, the compressibility of the fluid
mixture and the medium, the large mobility ratio in the displacement processes, and the
enormous size of field-scale application and the required long time period of prediction.

3. A MIXED FINITE ELEMENT METHOD FOR THE PRESSURE EQUATION

One important issue in the numerical solution of the system (2.12)–(2.17) is the manner
in which the mass flow rateσ, which governs the basic flow properties of the fluid flow
process, is calculated. Since the advection and diffusion–dispersion terms in the transport
equation (2.16) are governed by the mass flow rateσ, accurate simulation to Eq. (2.16)
requires an accurate approximation to the mass flow rateσ. However, the flow properties of
the porous media often change abruptly with sharp changes in lithology. Also, as discussed
in Section 2.3, the viscosityµ(c) also changes rapidly in space across steep fluid interfaces.
These sharp changes are accompanied by large changes in the pressure gradient∇ p which,
in a compensatory fashion, yield a fairly smooth mass flow rateσ. The standard finite
difference and finite element methods solve Eq. (2.14) for the pressurepdirectly, which may
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not be smooth due to the rough coefficients in these PDEs. The pressurep is differentiated
and then multiplied by a possibly rough coefficientK/µ to determine the mass flow rate
σ via Eq. (2.14). Therefore, the resulting mass flow rateσ is rough and often inaccurate,
which then reduces the accuracy of the approximation to the transport equation (2.16).

Mixed finite element methods approximate bothp and∇ p from a second-order elliptic
PDE simultaneously, yielding accurate approximations to∇ p [5, 11, 30, 42]. Moreover,
MFEMs conserve mass, which is of essential importance in these applications. Because of
these properties, MFEMs have been successfully applied in the numerical simulation to the
system of incompressible fluid flow (2.20)–(2.21) in reservoir simulation for obtaining the
pressurep and the Darcy velocityu simultaneously [19, 26, 47].

3.1. Weak Formulation

Motivated by these results, we apply the MFEM to solve the parabolic pressure equation
(2.14) in the system of compressible porous medium fluid flows (2.12)–(2.17) in order to
obtain an accurate mass flow rateσ as well as the pressurep. Let L2(Ä) be the standard
function space of all the Lebesgue square integrable functions onÄ. Then we define the
Sobolev spaces

H1(Ä) = {v(x) ∈ L2(Ä) | ∇v(x) ∈ (L2(Ä))2},
H(div;Ä) = {v(x) ∈ (L2(Ä))2 | ∇ · v ∈ L2(Ä)}
H0(div;Ä) = {v(x) ∈ H(div;Ä) | v(x) · n(x) = 0, x ∈ ∂Ä},

(3.1)

and

L2(0, T; X) = {w(x, t) |w(·, t): (0, T) 7→ X, ‖w(·, t)‖X ∈ L2(0, T)}, (3.2)

whereX is a Sobolev space defined onÄ.
Multiplying the second equation in Eq. (2.14) byµ(c)ρ−1(p)K−1 yields

µ(c)

ρ(p)
K−1σ +∇ p = ρ(p)g∇d, x ∈ Ä, t ∈ [0, T ], (3.3)

whereK−1 is the inverse of the permeability tensor. Integrating Eq. (3.3) with any test
function v∈ H0(div;Ä) applying the divergence theorem to the∇ p term, and then inte-
grating the first equation in Eq. (2.14) against any test functionsw(x) ∈ L2 we obtain the
following weak formulation: Find a pair(σ(x, t), p(x, t)) ∈ L2(0, T; H0(div;Ä)×L2(Ä))

such that ∫
Ä

µ(c)

ρ(p)
K−1σ · v dx−

∫
Ä

p∇ · v dx =
∫
Ä

ρ(p)g∇d · v dx,∫
Ä

w∇ · σ dx+
∫
Ä

sp(x, p)
∂p

∂t
w dx =

∫
Ä

qw dx (3.4)

∀(v, w) ∈ H0(div;Ä)× L2(Ä), t ∈ (0, T ],

with the initial valuep(x, 0)= p0(x).
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3.2. A Mixed Finite Element Method

Let K andL represent the numbers of grid blocks in thex-direction and they-direction.
We define a spatial partition on the domainÄ= (ax, bx)× (ay, by),

ax = xp
0 < xp

1 < · · · < xp
k < · · · < xp

K−1 < xp
K = bx,

ay = yp
0 < yp

1 < · · · < yp
l < · · · < yp

L−1 < yp
L = by,

(3.5)

with 1xp
k = xp

k − xp
k−1 for k = 1, 2, . . . , K and1yp

l = yp
l − yp

l−1 for l = 1, 2, . . . , L. We
introduce the lowest-order Raviart–Thomas MFEM space onÄ with the partition (3.5)

Sσ(Ä) = (M p
0,1[ax, bx] × M p

−1,0[ay, by]
)× (M p

−0,1[ax, bx] × M p
0,1[ay, by]

)
,

Sσ0 (Ä) = {v(x) ∈ Sp(Ä) | v(x) · n(x) = 0, x ∈ ∂Ä},
Sp(Ä) = M p

−1,0[ax, bx] × M p
−1,0[ay, by],

(3.6)

with

M p
α,β [ax, bx] = {v(x) ∈ Cα[ax, bx] | v(x) ∈ Pβ

[
xp

k−1, xp
k

]
, k = 1, 2, . . . , K

}
,

(3.7)
M p
α,β [ay, by] = {v(x) ∈ Cα[ay, by] | v(x) ∈ Pβ

[
yp

l−1, yp
l

]
, l = 1, 2, . . . , L

}
.

HereC0[a, b] andC−1[a, b] are the spaces of continuous and piecewise continuous func-
tions, respectively.Pβ is the space of univariate polynomials of degree less than or equal toβ.

In the numerical simulation for the system (2.12)–(2.17), we use a time stepping pro-
cedure. LetN be the number of time steps on the interval [0, T ]; we define a temporal
partition by

0= t0 < t1 < · · · < tn < · · · < tN−1 < tN = T, (3.8)

with 1tn = tn − tn−1 for n = 1, 2, . . . , N.
A fully discrete mixed finite element method for the pressure equation (2.14) reads as

follows: Forn= 1, 2, . . . , N, find a pair (σh(x, tn), ph(x, tn)) ∈ Sσ0 (Ä)×Sp(Ä), such that∫
Ä

µ(c(·, tn))
ρ( p̄h(·, tn))K

−1σh(·, tn) · vh dx−
∫
Ä

ph(·, tn)∇ · vh dx

=
∫
Ä

ρ( p̄h(·, tn))g∇d · vh dx,

1tn

∫
Ä

wh∇ · σh(·, tn) dx+
∫
Ä

sp( p̄h(·, tn))ph(·, tn−1)wh dx (3.9)

= 1tn

∫
Ä

q(·, tn)wh dx+
∫
Ä

sp( p̄h(·, tn))ph(·, tn−1)wh dx,

∀(vh, wh) ∈ Sσ0 (Ä)× Sp(Ä),

with ph(x, 0) ∈ Sp(Ä) being an approximation top0(x). Herec(x, tn) is assumed known
and p̄h(x, tn) is a projected value ofph(x, tn). The details will be presented in Section 5, in
which we present a decoupling and linearization technique for system (2.12)–(2.17).
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Remark 3.1. Besides the standard advantages of the MFEM mentioned at the beginning
of this section, the Raviart–Thomas expression of the mass flow rateσ(x, tn) is particu-
larly well-suited for the semi-analytical characteristic tracking used in the ELLAM scheme
for the transport equation (2.16). In addition, the characteristic tracking in the MMOC
scheme [22, 27, 45] often runs out of the physical domainÄ numerically and causes im-
plementational and analytical problems. These problems have been treated in anad hoc
manner in the MMOC simulation and remain a troublesome issue. In contrast, because
the no-flow boundary condition (the first equation in Eq. (2.19)) is treated as an essential
boundary condition in the MFEM (3.9), the semi-analytical characteristic tracking in the
ELLAM scheme is naturally guaranteed not to flow out of the physical domainÄ. This is
an additional advantage of the MFEMs when they are combined with the ELLAM scheme.

Remark 3.2. MFEMs reformulate the parabolic pressure equation (2.14) as a first-order
system of PDEs. This system is more complicated to solve than that of a standard FDM or
FEM. Also, the MFEM trial and test function spaces forp andσ must be chosen carefully,
so that they satisfy the inf-sup stability condition. Extensive research has been conducted on
the efficient solution of the MFEM system [2, 3, 10, 12, 36]. Finally, an additional numerical
difficulty for MFEMs in subsurface porous medium fluid flows is the effect of the singular
source and sink termsq(x, t) as well as the discontinuous coefficients. Related studies can
be found in the references mentioned and in [19, 26, 47].

4. AN ELLAM SCHEME FOR THE TRANSPORT EQUATION

In this section, we develop an ELLAM scheme for the transport equation (2.16) with the
assumption that the pressurep and the mass flow rateσ are known.

4.1. A Reference Equation

The ELLAM scheme uses a time-marching algorithm, so we only need to concentrate
on the current time interval [tn−1, tn] defined by (3.8). Multiplying the advection-diffusion
transport equation (2.16) by space-time test functionsz(x, t) that are continuous and piece-
wise smooth, vanish outside the space-time stripÄ× (tn−1, tn], and are discontinuous in
time at timetn−1, we come up with a space-time weak formulation for Eq. (2.16):∫

Ä

φρ c(x, tn)z(x, tn) dx+
∫ tn

tn−1

∫
Ä

∇z(y, θ) · D(σ, p)∇c(y, θ)dy dθ

−
∫ tn

tn−1

∫
Ä

c(y, θ)
[
φρ
∂z(y, θ)
∂θ

+ σ · ∇z(y, θ)
]
dy dθ

=
∫
Ä

φρc(x, tn−1z(x, t+n−1) dx+
∫ tn

tn−1

∫
Ä

c∗qz(y, θ)dy dθ. (4.1)

Herez(x, t+n−1= limt→ tn−1,t > tn−1 z(x, t) to take into account the fact thatz(x, t) is discon-
tinuous in time at timetn−1. For simplicity of notations, we do not explicitly express the
dependence ofρ= ρ(p), φ=φ(x, p), andσ= σ(x, t) on x, t , and p. The dependence
should be fairly clear from the context.

In the ELLAM framework [13, 33], an appropriate operator splitting of the adjoint equa-
tion of Eq. (2.16) concludes that the test functionsz(y, θ) should be chosen to satisfy the
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hyperbolic part of the adjoint equation of Eq. (2.16)

φρ
∂z

∂θ
(y, θ)+ σ · ∇z(y, θ) = 0, y ∈ Ä, θ ∈ [tn−1, tn]. (4.2)

Thus, the test functionsz(y, θ) should be constant along the characteristicsy = r(θ; x, tn)
defined by the initial-value problem of the ordinary differential equation (ODE)

dr
dθ
= σ

φρ
, θ ∈ [tn−1, tn],

r(θ; x, t)|θ=t = x.
(4.3)

For any(y, θ) ∈ Ä × [tn−1, tn], there exists anx∈Ä such thaty = r(θ; x, tn). We use
the Euler method to evaluate the second (source) term on the right-hand side of Eq. (4.1)
to get ∫ tn

tn−1

∫
Ä

(c ∗q)(y, θ)z(y, θ)dy dθ

=
∫
Ä

∫ tn

tn−1

(c ∗q)(r(θ; x, tn)θ))z(x, tn)|J(θ; x, tn)| dθ dx

= 1tn

∫
Ä

c ∗(x, tn)q(x, tn)z(x, tn) dx+ Eq(c
∗, z), (4.4)

where

|J(θ; x, tn)| =
∣∣∣∣∂r(θ; x, tn)

∂x

∣∣∣∣ = 1+O(tn − θ) (4.5)

is the Jacobian of the transformation fromx to r(θ; x, tn), andEq(c ∗, z) is the truncation
error due to the application of the Euler quadrature.

Similarly, we can evaluate the diffusion–dispersion term and have∫ tn

tn−1

∫
Ä

∇z(y, θ) · D(σ, p)∇c(y, θ)dy dθ

= 1tn

∫
Ä

∇z(x, tn) · D(σ, p)∇c(x, tn) dx+ ED(c, z), (4.6)

whereED(c, z) is the truncation error term.
Substituting Eqs. (4.4) and (4.6) into Eq. (4.1), we obtain a reference equation for the

transport equation (2.16),∫
Ä

φ(x, p(x, tn))ρ(p(x, tn))c(x, tn)z(x, tn) dx

+1tn

∫
Ä

∇z(x, tn) · D(σ(x, tn), p(x, tn))∇c(x, tn) dx

=
∫
Ä

φ(x, p(x, tn−1))ρ(p(x, tn−1))c(x, tn−1)z(x, t+n−1) dx

−1tn

∫
Ä

c∗(x, tn)q(x, tn)z(x, tn) dx+ E(c, z), (4.7)
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with

E(c, z) =
∫ tn

tn−1

∫
Ä

c(y, θ)
[
(φρ)

∂z(y, θ)
∂θ

+ σ · ∇z(y, θ)
]

dy dθ

+ ED(c, z)− Eq(c
∗, z). (4.8)

4.2. An ELLAM Scheme

We derive an ELLAM scheme for the transport equation (2.16), based on the reference
equation (4.7). LetI and J be the numbers of grid blocks in thex and y directions,
respectively. We define a spatial partition onÄ= (ax, bx)× (ay, by) as

ax = xc
0 < xc

1 < · · · < xc
i < · · · < xc

I−1 < xc
I = bx,

(4.9)
ay = yc

0 < yc
1 < · · · < yc

j < · · · < yc
J−1 < yc

J = by,

with 1xc
i = xc

i − xc
i−1 for i = 1, 2, . . . , I , and1yc

j = yc
j − yc

j−1 for j = 1, 2, . . . , J. The
spatial partition (4.9) does not necessarily have to be the same as the spatial partition (3.5)
for the pressure equation.

We define the trial and test function spaces to be the space of continuous and piecewise
bilinear polynomials onÄ with the spatial partition (4.9)

Sc(Ä) = Mc
1[ax, bz] × Mc

1[ay, by], (4.10)

where

Mc
1[ax, bx] = {v(x) ∈ C0[ax, bx] | v(x) ∈ P1

[
xc

i−1, xc
i

]
, i = 1, 2, . . . , I

}
,

(4.11)
Mc

1[ay, by] = {v(x) ∈ C0[ay, by] | v(x) ∈ P1
[
yc

j−1, yc
j

]
, j = 1, 2, . . . , J

}
.

HereC0[a, b] is the space of continuous functions andP1 is the space of linear functions.
Under the assumption that the pressureph(x, tn) and the mass flow rateσh(x, tn) in

Eq. (2.16) are known, the ELLAM scheme can be defined as follows: Forn= 1, 2, . . . , N,
find ch(x, tn)∈ Sc(Ä) such that∫

Ä

φ(x, ph(x, tn))ρ(ph(x, tn))ch(x, tn)z(x, tn) dx

+1tn

∫
Ä

∇zh(x, tn) · D(σh(x, tn), ph(x, tn))∇ch(x, tn) dx

=
∫
Ä

φ(x, ph(x, tn−1))ρ(ph(x, tn−1))ch(x, tn−1)zh(x, t+n−1) dx

−1tn

∫
Ä

c∗(x, tn)q(x, tn)zh(x, tn) dx ∀zh(x, tn) ∈ Sc(Ä), (4.12)

with ch(x, 0)∈ Sc(Ä) being an approximation toc0(x).

Remark 4.1. First, by using a characteristic tracking, the ELLAM scheme (4.12) signif-
icantly reduces the temporal truncation errors and generates accurate numerical solutions
even if very large time steps are used. Second, the ELLAM scheme conserves mass [13,
33], which is of essential importance in applications. Third, the ELLAM scheme (4.12)
symmetrizes the governing transport PDE (2.16) and generates a nine-banded, symmet-
ric and positive definite coefficient matrix, which is identical to the coefficient matrix for
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parabolic equations discretized by a standard finite element method. Finally, the authors
previously performed extensive numerical experiments for one- and two-dimensional linear
transport equations, which show that ELLAM schemes often outperform many widely used
and well-received numerical methods [1, 56]. Note that once the pressurep and the mass
flow rateσ are known, the transport equation (2.16) is, in principle, a linear advection–
diffusion transport PDE. Hence, we anticipate that the ELLAM scheme (4.12) will generate
accurate numerical solutions for the system (2.12)–(2.17). In Section 6, we will perform
the numerical experiments to observe the performance of the ELLAM scheme.

Remark 4.2. In the ELLAM scheme (4.12),ch(x, tn)∈ Sc(Ä) andzh(x, tn)∈ Sc(Ä) are
piecewise-bilinear functions at timetn. Hence, all the terms but the first one on the right-hand
side in Eq. (4.12) are standard integrals for finite element methods and can be evaluated
by standard methods. In the first term, the value ofch(x, tn−1) is known for the solution at the
previous time steptn−1. But the test functionzh(x, t+n−1)= limt→tn−1,t>tn−1zh(x, t)= zh(x∗, t),
with x∗ = r(tn; x, tn−1) being the point at the head of the characteristic that corresponds tox
at the foot. The evaluation of this term is a very challenging issue, due to the deformation of
each cell [xc

i−1, xc
i ]× [yc

j−1, yc
j ] on which the test functions are defined as the geometry is

backtracked from time steptn to time steptn−1. The most practical approach for evaluating
this term is to use a forward-tracking algorithm [46]. This would enforce an integration
quadrature at time steptn−1 with respect to the fixed spatial grids (4.9) on whichc(x, tn−1)

is defined. The evaluation of the test functionz(x, t+n−1) is difficult. Rather than backtracking
the geometry and estimating the test functions by mapping the deformed geometry onto the
fixed grids (4.9), we will forward track discrete quadrature points chosen on the fixed grid
at the time steptn−1 to time steptn, where evaluation ofzh(x, t) is straight forward. Notice
that this forward tracking has no effect on the solution grid (4.9) or the data structure of
the scheme (4.12). Therefore, this forward-tracking algorithm avoids the complication of
distorted grids of previous forward-tracking methods or the complication of backtracking
geometry of backtracking methods.

Remark 4.3. For a general mass flow rate fieldσ(x, t), porosityφ(x, p) and density
ρ(p), one cannot analytically solve the initial-value problem (4.9) to track the character-
istics. Hence, numerical means have to be used to approximate the characteristics. In the
context of linear transport PDEs where the fluid velocity is assumed to be a known smooth
function, we were able to utilize Euler quadrature or a Runge–Kutta quadrature to track
characteristics and to obtain accurate numerical solutions [56]. However, in the ELLAM
scheme (4.12), the mass flow rateσ(x, tn) is given as a Raviart–Thomas solution to the
pressure equation (2.14). Thus, the Euler and Runge–Kutta methods used in [56] and virtu-
ally all quadratures based on the numerical solutions of ordinary differential equations with
smooth right-hand sides could introduce fairly large errors to the characteristic tracking
procedure. These errors in turn affect the accuracy of the numerical solutions of ELLAM
schemes.

Note that in applications the porosityφ andρ are constant on each cell and that the
flow rateσh is a Raviart–Thomas solution. Therefore, we can analytically solve a modified
initial-value problem

dr
dθ
= σh(x, tn)
φ(x, ph(x, tn))ρ(ph(x, tn))

, θ ∈ [tn−1, tn],

r(θ; x, t)|θ=t = x
(4.13)
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on each cell to track the characteristics on a cell-by-cell basis [32, 40, 48]. In this approach,
we significantly improve the accuracy of the characteristic tracking and greatly minimize the
effect of the point source and sink singularities on the characteristic tracking. Furthermore,
because the mass flow rateσ exactly satisfies the no-flow boundary condition (2.19) due to its
treatment as an essential boundary condition in the MFEM scheme (3.9), the characteristic
tracking determined by Eq. (4.13) never runs out of the physical domainÄ and avoids
the loss of mass in the ELLAM scheme (4.12). This is another advantage of the ELLAM
scheme when applied to the system (2.12)–(2.17).

5. AN ELLAM-MFEM SOLUTION TECHNIQUE FOR SYSTEMS

OF COMPRESSIBLE FLUID FLOWS IN POROUS MEDIA

In this section, we develop an ELLAM-MFEM sequential solution technique for systems
of compressible fluid flows in porous media, which are given by Eqs. (2.12)–(2.17). As we
discussed in Remarks 2.1–2.3, the numerical simulation of these systems encounters serious
difficulties and complexities, including the advection dominance of the advection–diffusion
transport PDE (2.16) and the moving steep fronts present in its solutions, the nonlinearity
and close couplings between the equations in the system, the singularities of the solutions at
point sources and sinks, the strong heterogeneity of the porous medium, the compressibility
of the fluid mixture and the medium, the large mobility ratio in displacement processes, the
enormous size of field-scale application, and the required long time period of prediction. A
blind linearization with little regard to the properties of the equations or the solutions can
result in extremely large, ill-conditioned, nonlinear systems. The accurate solution of these
equations can be extremely difficult and expensive. These issues, if not treated carefully, may
destroy the usefulness of the simulation. Fully coupled and fully implicit methods, which
solve all of the coupled nonlinear PDEs in an implicit fashion and which have been widely
used in large-scale simulators in industry, are very stable and robust even if large time steps
are used in a simulation. But they are fairly expensive to solve per time step and are very diffu-
sive. Because of the effect of the strong temporal errors, the time steps must still be restricted
in size, not due to the stability restriction but for the purpose of accuracy of a simulation.

In this section, we develop an ELLAM-MFEM sequential solution technique for system
(2.12)–(2.17), in which we use the ELLAM scheme (4.12) to solve the transport equation
(2.16) and the mixed finite element method (3.9) to solve the pressure equation (2.14).
Notice that in subsurface porous medium fluid flow processes, the mass flow rateσ is fairly
smooth outside neighborhoods of the point sources and sinks. Therefore, we allow the use
of coarser spatial grids (3.5) for the pressure equation (2.14) than the spatial grids (4.9) for
the transport equation (2.16).

To derive an ELLAM-MFEM iterative solution procedure, we define the following ap-
proximations to the pressureph(x, tn), the mass flow rateσh(x, tn), and the concentration
ch(x, tn) by using extrapolation operators

E1 f (x, tn) = f (x, tn−1), n = 1, 2, . . . , N, (5.1)

and

E2 f (x, tn) =
{

f (x, tn−1), n = 1,(
1+ 1tn

1tn−1

)
f (x, tn−1)− 1tn

1tn−1
f (x, tn−2), n = 2, 3, . . . , N.

(5.2)

Here f could be the pressureph or the concentrationch.
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Recalling the hyperbolic nature of the transport equation (2.16), we can also define an
extrapolation along the characteristics for the concentrationch,

E3ch(x, tn) = ch(x∗, tn−1), n = 1, 2, . . . , N. (5.3)

wherex∗ is the foot of the characteristicx∗ = r (tn−1; x, tn) defined by the ODE

dr
dθ
= σh(x, tn−1)

φ(x, ph(x, tn−1))ρ(ph(x, tn−1))
, θ ∈ [tn−1, tn],

(5.4)
r(θ; x, tn)|θ=tn = x.

We next define a weighted iteration operatorFω by

Fω f (m)(x, tn) =
{

f (0)(x, tn), m= 1

(1− ω) f (m−2)(x, tn)+ ω f (m−1)(x, tn), m≥ 2.
(5.5)

where 0<ω<2 is a weighting parameter for the iterative procedure.f (m) could bep(m)h or
c(m)h defined in the ELLAM-MFEM solution procedure below.

With these notations introduced, we now define an ELLAM-MFEM iterative sequential
solution procedure for systems of compressible fluid flows in porous media, which are
defined by Eqs. (2.12)–(2.17), as follows:

A. Initialization : n= 0
A1: Define(ph(x, 0),σh(x, 0))∈ Sσ(Ä)× Sp(Ä)by a stationary analogue of Eq. (3.9)

∫
Ä

µ(c0(·))
ρ(p0(·))K

−1(σh(·, 0)− σ0(·)) · vh dx−
∫
Ä

(ph(·, 0)− p0(·))∇ · vh dx = 0,

(5.6)∫
Ä

wh∇ · (σh(·, 0)− σ0(·)) dx = 0, ∀(vh, wh) ∈ Sσ0 (Ä)× Sp(Ä),

with

σ0(x) = −ρ(p0(x))K
µ(c0(x))

(∇ p0(x)− ρ(p0(x))g∇d), x ∈ Ä, t ∈ (0, T ]. (5.7)

In the MFEM scheme (5.6), the pressureph(x, 0) can be determined up to an arbitrary
constant. Unlike the numerical simulation to incompressible fluid flows (2.20)–(2.21), where
the additional constant in the pressureph does not affect the solution procedure at all, in
the current context the additional constant in the pressureph affects both Eqs. (2.14) and
(2.16). To uniquely determine the pressureph(x, 0) while maintaining the conservation of
mass, we impose the condition

∫
Ä

ph(·, 0) dx =
∫
Ä

p0(·) dx. (5.8)
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A2: Definech(x, 0)∈ Sc(Ä) to be theL2-projection ofc0(x), which is given in Eq. (2.18)∫
Ä

ch(·, 0)zh dx =
∫
Ä

c0(·)zh(·) dx, ∀zh ∈ Sc(Ä). (5.9)

B. Time Stepping Procedure:
for n= 1, 2, . . . , N do

B1. Projection Step:
A. Find the solution pair(p(0)h (x, tn),σ

(0)
h (x, tn))∈ Sσ(Ä)× Sp(Ä) such that

∫
Ä

µ(Ech(·, tn))
ρ(Eph(·, tn))K

−1σ(0)h (·, tn) · vh dx−
∫
Ä

p(0)h (·, tn)∇ · vh dx

=
∫
Ä

ρ(Eph(·, tn))g∇ d · vh dx,

1tn

∫
Ä

wh∇ · σ(0)h (·, tn) dx+
∫
Ä

sp(Eph(·, tn))p(0)h (·, tn)wh dx (5.10)

= 1tn

∫
Ä

q(·, tn)wh dx+
∫
Ä

sp(Eph(·, tn))p(0)h (·, tn−1)wh dx,

∀(vh, wh) ∈ Sσ0 (Ä)× Sp(Ä).

In Eq. (5.10),Eph(x, tn) could be eitherE1 ph(x, tn) or E2 ph(x, tn) that are defined in
Eqs. (5.1) or (5.2).Ech(x, tn) could be one of theE1ch(x, tn), E2ch(x, tn), andE3ch(x, tn)
that are defined in Eqs. (5.1)–(5.3).

B. Find the solutionc(0)h (x, tn)∈ Sc(Ä) such that∫
Ä

φ
(·, p(0)h (·, tn)

)
ρ
(

p(0)h (·, tn)
)
c(0)h (·, tn)zh(·, tn) dx

+1tn

∫
Ä

∇zh(·, tn) · D
(
σ(0)h (·, tn), p(0)h (·, tn)

)∇ch(·, tn) dx

(5.11)

=
∫
Ä

φ(·, ph(·, tn−1))ρ(ph(·, tn−1))ch(·, tn−1)zh(·, t+n−1) dx

−1tn

∫
Ä

c∗(·, tn)q(·, tn)zh(·, tn) dx, ∀zh(·, tn) ∈ Sc(Ä),

To evaluatezh(x, t+n−1), we define a characteristicr(θ; x, tn−1) by

dr
dθ
= σ(0)h (x, tn)

φ
(
x, p(0)h (x, tn)

)
ρ
(

p(0)h (x, tn)
) , θ ∈ [tn−1, tn],

(5.12)
r(θ; x, tn−1)|θ=tn−1 = x.

Then we evaluatezh(x, t+n−1)= zh(x̃, tn) with x̃= r(tn; x, tn−1).
B2. Iteration Step:
if ERROR>TOLERANCE then

m=m+ 1.
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A. Find the solution pair(p(m)h (x, tn), σ
(m)
h (x, tn))∈ Sσ(Ä)× Sp(Ä) such that

∫
Ä

µ
(
Fωc(m)h (·, tn)

)
ρ
(
Fω p(m)h (·, tn)

)K−1σ(m)h (·, tn) · vh dx−
∫
Ä

p(m)h (·, tn)∇ · vh dx

=
∫
Ä

ρ
(
Fω p(m)h (·, tn)

)
g∇ d · vh dx,

1tn

∫
Ä

wh∇ · σ(m)h (·, tn) dx+
∫
Ä

sp
(
Fω p(m)h (·, tn)

)
p(m)h (·, tn)wh dx (5.13)

=1tn

∫
Ä

q(·, tn)wh dx+
∫
Ä

sp
(
Fω p(m)h (·, tn)

)
p(m)h (·, tn−1)wh dx,

∀(vh, wh) ∈ Sσ0 (Ä)× Sp(Ä).

B. Find the solutionc(m)h (x, tn)∈ Sc(Ä) such that∫
Ä

φ
(·, p(m)h (·, tn)

)
ρ
(

p(m)h (·, tn)
)
c(m)h (·, tn)zh(·, tn) dx

+1tn

∫
Ä

∇zh(·, tn) · D
(
σ(m)h (·, tn), p(m)h (·, tn)

)∇c(m)h (·, tn) dx

(5.14)

=
∫
Ä

φ(·, ph(·, tn−1))ρ(ph(·, tn−1))ch(·, tn−1)zh(·, t+n−1) dx

−1tn

∫
Ä

c∗(·, tn)q(·, tn)zh(·, tn) dx, ∀zh(·, tn) ∈ Sc(Ä).

To evaluatezh(x, t+n−1) in Eq. (5.14), we define a characteristicr(θ; x, tn−1) by

dr
dθ
= σ(m)h (x, tn)

φ
(
x, p(m)h (x, tn)

)
ρ
(

p(m)h (x, tn)
) , θ ∈ [tn−1, tn],

(5.15)
r(θ; x, tn−1)|θ=tn−1 = x.

Then we evaluatezh(x, t+n−1)= zh(x̃, tn) with x̃= r(tn; x, tn−1).
else

We define

ph(x, tn) = p(m)h (x, tn), σh(x, tn) = σ(m)h (x, tn), ch(x, tn) = c(m)h (x, tn). (5.16)

endif
end do

6. NUMERICAL EXPERIMENTS

In this section, we present numerical results for several different types of simulations
for compressible fluid flows in porous media to observe the performance of the ELLAM-
MFEM solution procedure. The numerical experiments simulate compressible fluid flow
processes within a horizontal reservoir of one unit thickness over a period of 15 years
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TABLE 6.1

Data Used in the Numerical Simulations

Spatial domain Ä = (0, 1000)× (0, 1000) ft2

Time period of simulation [0, T]= [0, 5400] days (i.e., 15 years)
Reference porosity φr = 0.1
Compressibility of the medium cφ = 0.000001.
Reference density ρr = 0.8 g/cm3= 49.942 lb/ft3

Compressibility of the fluid cρ = 0.0001
Reference pressure pr = 1 atm.= 14.696 psia
Viscosity of the resident fluid (oil) µo = 1 cp
Location of the injection well (1000, 1000) (i.e., the upper-right corner ofÄ)
Location of the production well (0, 0) (i.e., the lower-left corner ofÄ)
Injection rate Q = 30 ft2/day
Injection concentration c∗I = 1.0
Production rate Q = −30 ft2/day
Initial pressure p0(x, y) = 3000 psia
Initial concentration c0(x, y) = 0.0
Grid size for pressure 1xp = 1yp= 25 ft
Grid size for concentration 1xp = 1yp= 25 ft
Time step 1t = 360 days= 1 year

(5400 days), for one-quarter of a regular five-spot pattern with injection and production
wells at the corners. The test runs include problems with adverse mobility ratios, tensor
dispersion models with various amount of diffusion and dispersion, heterogeneous perme-
abilities, and heterogeneous media. Few reported data and results can be found in the liter-
ature on numerical simulations to the system (2.12)–(2.17), especially with characteristic
methods. Hence, whenever it is possible, we try to choose test problems for corresponding
incompressible fluid flows (2.20)–(2.21) with reported data and results in the literature.
This (i) helps us understand whether the ELLAM-MFEM solution procedure generates
physically acceptable solutions and (ii) serves as a way to compare the ELLAM-MFEM
solution procedure with many well regarded methods. We understand that this would put
the ELLAM-MFEM solution procedure at a disadvantage, because it is used to simulate the
compressible fluid flow system (2.12)–(2.17) that has much stronger nonlinearity and cou-
plings than the incompressible fluid flow system (2.20)–(2.21) simulated by other methods.
The data used in these experiments are given in Table 6.1.

In Table 6.1,Q= 30 ft2/day is the volumetric flow rate of injection (or production ifQ
is negative) in the well cells (recall that we have averaged all the physical quantities in thez
direction in deriving system (2.12)–(2.17)). The mass flow rateq in Eqs. (2.14) and (2.16) is
equal to the product of the mass densityρ and the quantityQ per unit volume [24, 38]. In the
numerical experiments, we use a uniform spatial partition1xp=1yp=1xc=1yc= 25 ft
(i.e., 40× 40 spatial cells) on the domainÄ, although we understand that a nonuniform
partition with finer cells around wells could probably generate more accurate solutions
and our simulator allows a general partition. We also use an extremely large time step
of 1t = 360 days (1 year). In contrast, in the numerical results reported in the literature
previously, the time steps used range froma few daysfor finite difference or finite element
simulators to abouta monthfor MMOC-based simulators [4, 24, 27, 38, 45, 49, 58] even
for the relatively simpler incompressible fluid flow system (2.20)–(2.21).
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6.1. Test Problem I: Numerical Simulation in Homogeneous Media

In this section, we carry out numerical simulations to the system (2.12)–(2.17) of com-
pressible fluid flows through homogeneous and isotropic porous media. Besides those in
Table 6.1, additional data used in the numerical simulations are presented in Table 6.2.

6.1.1. Experiments I.1

In this group of experiments, we perform numerical example runs for porous medium
fluid flows, under somewhat idealized assumptions that the mobility ratio between the
resident and injected fluids isM = 1 and that only molecular diffusion is present in the
physical diffusion–dispersion relation (i.e.,Dm=φr dm= 0.5 ft2/day, Dl =φr dl = 0.0 ft,
andDt =φr dt = 0.0 ft). This example has been widely used in the performance testing of
a simulator since the qualitative behavior of the physical process is understood fairly well
in this case.

The surfaces and contour plots of the simulation att = 3 years (1080 days), att = 7 years
(2520 days), att = 10 years (3600 days), and att = 15 years (5400 days) are presented in
Fig. 1. It is observed that the solution att = 3 years is a family of concentric circles, as one
should expect since the molecular diffusion is homogeneous and the mobility ratioM = 1.
These results are physically reasonable due to the following reasons: (i) The mobility ratio
M = 1 implies that the fluid has a constant viscosityµ(c)=µ(0). (ii) The facts thatK is a
constant tensor and that the reservoir is horizontal lend us to conclude that the mass flow
rateσ is actually radial. (iii) Only the molecular diffusion, which is isotropic, is assumed to
be present. Since in this case the mathematical model does not include any permeability or
viscosity variations or mechanical dispersion effects, any fingering phenomenon, if present,
would be due to numerical errors and not to the modeling of any physics.

Ideally, if the production well is located at infinity, the solutions should maintain the form
of a family of concentric circles that will diffuse gradually. In the current context, because of
the effect of the no-flow boundary conditions and the production well, the invading fluid is
expected to move toward the production well faster along the diagonal (flow direction). This
trend has been observed from the solutions att = 7 years and becomes more obvious in the
numerical simulations att = 10 years. Byt = 15 years, these figures show that the injected
fluid has swept all the reservoir and has demonstrated a virtually perfect recovery of the
oil in this idealized situation. These results illustrate that even though extremely large time

TABLE 6.2

Additional Data Used in the Experiments I.1 and I.2

Data used in Experiments I.1
Permeability tensor kxx = kyy= 80 md andkxy= kyx= 0 md
Mobility ratio M = 1
Molecular diffusion coefficient Dm = φr dm= 0.5 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 0.0 ft andDt =φr dt = 0.0 ft

Data used in Experiments I.2
Permeability tensor kxx = kyy= 80 md andkxy= kyx= 0 md
Mobility ratio M = 41
Molecular diffusion coefficient Dm = φr dm= 0.0 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 2.0 ft andDt =φr dt = 0.2 ft
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FIG. 1. The concentration plots of the invading component in Experiments I.1 at 3 and 7 years (A–D), and
at 10 and 15 years (E–H). (A) Surface plot att = 3 years. (B) Contour plot att = 3 years. (C) Surface plot at
t = 7 years. (D) Contour plot att = 7 years. (E) Surface plot att = 10 years. (F) Surface plot att = 15 years.
(G) Contour plot att = 10 years. (H) Contour plot att = 15 years.

steps and fairly coarse spatial grids have been used in the simulation, the ELLAM-MFEM
simulator still generates physically acceptable solutions.

6.1.2. Experiments I.2

In this group of experiments, we consider a more realistic simulation in which an adverse
mobility ratio of M = 41 is used and an anisotropic physical dispersion in tensor form is
assumed(Dm=φr dm= 0.0 ft2/day,Dl =φr dl = 2.0 ft, andDt =φr dt = 0.2 ft). The surfaces
and contour plots of the simulation att = 3 years,t = 7 years,t = 10 years, andt = 15 years
are presented in Fig. 2.

A severe difficulty in the numerical modeling of reservoir simulation is the need to in-
corporate in the simulation models the bypassing of hydrocarbon due to a viscous fingering
phenomenon. Due to the effect of the large adverse mobility ratioM = 41, the viscosityµ(c)
changes rapidly across the steep fluid interface. Consequently, the velocity has a rapid change
across the fluid interface. Moreover, the large differences in longitudinal versus transverse
dispersion levels force the fluid flow to move much faster along the diagonal direction (flow
direction) from the injection well to the production well. The plots in Fig. 2 show that the con-
centration front moves fairly fast in the diagonal direction, which exactly reflects the physical
phenomenon of this case. From the point of view of petroleum recovery, this means a much
less effective recovery is expected in a realistic petroleum displacement process than in an
idealized process in Experiments I.1. We will address this issue more in the next subsection.
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FIG. 1—Continued

6.2. Test Problem II: Numerical Simulation in Substructured Media

We consider a numerical simulation to system (2.12)–(2.17) in a substructured medium.
The data are given in Table 6.3 in addition to Table 6.1. The surfaces and contour plots
of the simulation att = 3 years,t = 7 years,t = 10 years, andt = 15 years are presented
in Fig. 3. From these plots, we have the following observations: (i) The ELLAM-MFEM

TABLE 6.3

Additional Data Used in Experiments II

Data in subdomainÄ(1)

Subdomain Ä(1) = (175, 600)× (175, 600) ft2

Permeability tensor kxx = kyy= 40 md andkxy= kyx= 0 md
Mobility ratio M = 41
Reference porosity φr = 0.09
Molecular diffusion coefficient Dm = φr dm= 0.0 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 1.8 ft andDt =φr dt = 0.18 ft

Data in subdomainÄ(2)

Subdomain Ä(2) = Ä−Ä(1)

Permeability tensor kxx = kyy= 80 md andkxy= kyx= 0 md
Mobility ratio M = 41
Reference porosity φr = 0.1
Molecular diffusion coefficient Dm = φr dm= 0.0 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 2.0 ft andDt =φr dt = 0.2 ft



COMPRESSIBLE FLUID FLOWS 367

FIG. 2. The concentration plots of the invading component in Experiments I.2 at 3 and 7 years (A–D), and
at 10 and 15 years (E–H). (A) Surface plot att = 3 years. (B) Contour plot att = 3 years. (C) Surface plot at
t = 7 years. (D) Contour plot att = 7 years. (E) Surface plot att = 10 years. (F) Surface plot att = 15 years.
(G) Contour plot att = 10 years. (H) Contour plot att = 15 years.

solution procedure developed in this paper generates physically acceptable solutions for a
compressible fluid flow through a substructured medium, even though a fairly coarse spatial
grid and an extremely large time step are used in the simulation. This in turn implies signif-
icantly improved computational efficiency. (ii) The comparison of these results with those
in Experiments I.2 shows that whenever possible, one should place the production well in
a low-permeability zone to increase the area swept by the injecting fluid (or equivalently
the efficiency of the petroleum recovery). This illustrates how the results of numerical sim-
ulations could help decision making in the petroleum reservoir industry. (iii) An important
technique in enhanced oil recovery is the use of polymers in flooding processes to alter
the permeability of the reservoir porous medium to allow flow in certain ways. Since the
polymers are highly viscous, they can be used to selectively block or reduce the permeabil-
ities of certain pores or flow regions to direct the flow in a manner to optimize hydrocarbon
recovery. The numerical results in this section could also serve as a demonstration for this
technique. In this case, the properties of the original fluid and porous medium are given
in Table 6.2, while the data in Table 6.3 can be viewed as the altered properties after the
injection of some polymers. Then, the solutions in Figs. 2 and 3 illustrate that the displace-
ment process in Experiments II sweeps much larger area, which in turn implies a greatly
improved efficiency of the recovery process.
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FIG. 2—Continued

6.3. Test Problem III: Numerical Simulation in Layered Media

In this section, we carry out numerical simulations to compressible fluid flow processes
in layered media, which are often encountered in many field applications.

6.3.1. Experiments III.1

We simulate fluid flows in a layered medium in which one highly permeable zone is
located between two low permeable zones. The data are given in Table 6.4. The surface
and contour plots of the concentration of the invading fluid att = 3 years,t = 7 years,
t = 10 years, andt = 15 years are presented in Fig. 4. From Figs. 4A and 4B, we see that
the concentration front initially moves faster in the vertical direction than in the horizontal
direction, because the subdomainÄ(2) has a larger permeability and, thus, the mass flow rate
σ than that on the subdomainÄ(1). Once the invading fluid reachesÄ(2), the concentration
front moves much faster in the horizontal direction onÄ(2) than onÄ(1) ∪Ä(3) and exhibits
the behavior of a layered flow, due to the same reason. This trend continues as the time
evolves, as shown in Figs. 4C–4H.

6.3.2. Experiments III.2

We consider the simulation in a layered medium with one low permeable zone between
two highly permeable zones, with the data being given in Table 6.5 and the surface and con-
tour plots of the concentration of the invading fluid att = 3 years,t = 7 years,t = 10 years,
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TABLE 6.4

Additional Data Used in Experiments III.1

Data in the first and third layersÄ(1) ∪Ä(3)

First layer Ä(1) = (0, 1000)× (0, 325) ft2

First layer Ä(3) = (0, 1000)× (675, 1000) ft2

Permeability tensor kxx = kyy= 30 md andkxy= kyx= 0 md
Mobility ratio M = 41
Reference porosity φr = 0.1
Molecular diffusion coefficient Dm = φr dm= 0.0 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 2.0 ft andDt =φr dt = 0.2 ft

Data in the second layerÄ(2)

Subdomain Ä(2) = (0, 1000)× (325, 675)
Permeability tensor kxx = kyy= 80 md andkxy= kyx= 0 md
Mobility ratio M = 41
Reference porosity φr = 0.1
Molecular diffusion coefficient Dm = φr dm= 0.0 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 2.0 ft andDt =φr dt = 0.2 ft

FIG. 3. The concentration plots of the invading component in Experiments II at 3 and 7 years (A–D), and
at 10 and 15 years (E–H). (A) Surface plot att = 3 years. (B) Contour plot att = 3 years. (C) Surface plot at
t = 7 years. (D) Contour plot att = 7 years. (E) Surface plot att = 10 years. (F) Surface plot att = 15 years.
(G) Contour plot att = 10 years. (H) Contour plot att = 15 years.



370 WANG ET AL.

TABLE 6.5

Additional Data Used in Experiments III.2

Data in the first and third layersÄ(1) ∪Ä(3)

First layer Ä(1) = (0, 1000)× (0, 325) ft2

First layer Ä(3) = (0, 1000)× (675, 1000) ft2

Permeability tensor kxx = kyy= 80 md andkxy= kyx= 0 md
Mobility ratio M = 41
Reference porosity φr = 0.1
Molecular diffusion coefficient Dm = φr dm= 0.0 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 2.0 ft andDt =φr dt = 0.2 ft

Data in the second layerÄ(2)

Subdomain Ä(2) = (0, 1000)× (325, 675)
Permeability tensor kxx = kyy= 30 md andkxy= kyx= 0 md
Mobility ratio M = 41
Reference porosity φr = 0.1
Molecular diffusion coefficient Dm = φr dm= 0.0 ft2/day
Mechanical dispersion coefficients Dl = φr dl = 2.0 ft andDt =φr dt = 0.2 ft

FIG. 3—Continued
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FIG. 4. The concentration plots of the invading component in Experiments III.1 at 3 and 7 years (A–D),
and at 10 and 15 years (E–H). (A) Surface plot att = 3 years. (B) Contour plot att = 3 years. (C) Surface plot
at t = 7 years. (D) Contour plot att = 7 years. (E) Surface plot att = 10 years. (F) Surface plot att = 15 years.
(G) Contour plot att = 10 years. (H) Contour plot att = 15 years.

and t = 15 years being presented in Fig. 5. They show that the concentration front slows
down once it moves into the subdomainÄ(2), becauseÄ(2) has a smaller permeability
and, thus, smaller mass flow rateσ is larger than that on the subdomainÄ(1). The plots at
t = 7 years andt = 10 years demonstrate that the concentration front at the right half ofÄ

is rapidly catching up with the main flow path in the diagonal direction and forms some
fingering. The corresponding displacement process of the invading fluid becomes much
more complex and the fingering phenomena occurs.

In summary, the numerical simulation of fluid flow processes in multi-layered porous
media could encounter serious fingering problems. Note that the governing equations (2.14)
and (2.16) in the systems of compressible fluid flows (2.12)–(2.17) are obtained via a
volume averaging mechanism that does not model physical behavior on a pore-volume
scale. Because the mathematical model now includes differences in longitudinal versus
transverse dispersion levels, these equations should model the corresponding behavior of
the flow in the form of a macroscopic fingering phenomenon due to varying flow velocities,
which should propagate and grow in a manner similar to viscous fingering on a smaller
scale.
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FIG. 4—Continued

7. SUMMARY AND CONCLUSIONS

In this paper we develop an ELLAM-MFEM sequential decoupling and linearization
solution procedure for compressible fluid flows in porous media with point sources and
sinks (injection and production wells), in which we use an Eulerian–Lagrangian localized
adjoint method to solve the transport equation (2.16) for the concentrationc and a mixed
finite element method to solve the pressure equation (2.14) for the pressurep and the mass
flow rateσ. The ELLAM-MFEM solution procedure symmetrizes the governing transport
equation, and greatly reduces or eliminates non-physical oscillation and/or excessive nu-
merical dispersion present in many large-scale simulators that are widely used in industrial
applications. In addition, the ELLAM-MFEM solution procedure conserves mass and treats
boundary conditions in a natural manner. The numerical experiments also illustrate that the
ELLAM-MFEM solution procedure can simulate compressible fluid flows in porous media
accurately with fairly coarse spatial grids as well as very large time steps, which are much
larger than the time steps used in the MMOC-MFEM sequential solution procedure and
one or two orders of magnitude larger than those used in many large-scale simulators. In
this manner, the ELLAM-MFEM solution technique has a greatly improved computational
efficiency over many other methods. Finally, the ELLAM-MFEM technique can treat large
adverse mobility ratios, discontinuous permeabilities and porosities, anisotropic dispersion
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FIG. 5. The concentration plots of the invading component in Experiments III.2 at 3 and 7 years (A–D),
and at 10 and 15 years (E–H). (A) Surface plot att = 3 years. (B) Contour plot att = 3 years. (C) Surface plot
at t = 7 years. (D) Contour plot att = 7 years. (E) Surface plot att = 10 years. (F) Surface plot att = 15 years.
(G) Contour plot att = 10 years. (H) Contour plot att = 15 years.

in tensor form, compressible fluid and media, heterogeneous media, and point sources and
sinks.

Because system (2.14)–(2.16) and its variety of modifications hold in many applications,
the ELLAM-MFEM solution technique (possibly with slight modifications) developed in
this paper could be applied to many other fields in addition to petroleum reservoir simulation.
For example, the ELLAM-MFEM technique can be used in the simulation of subsurface
environmental modeling and/or remediation in fully saturated zone, since the mathematical
model (2.14)–(2.16) still holds in this case. For a subsurface flow process through an
unsaturated zone above the water table, the pressure PDE (2.14) could be replaced by the
Richards equation [44], while the tranport PDE (2.16) still holds. The Richards equation
can be solved by an appropriately modified version of the MFEM scheme in Section 3 (see
[9] and the references therein), while the transport equation (2.16) can be solved again by
the ELLAM scheme in Section 4. In principle, we can apply the ELLAM method to solve
the systems in which the transport PDEs are linear in their primary unknown variables. We
refer readers to the work of Ewing [25] if the transport PDEs are nonlinear in the primary
unknowns.
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FIG. 5—Continued
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